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Abstract. This paper deals with a method and a model called SPACE
allowing to design multiagent systems. Their main interest is to introduce
tools to design and to validate the produced system at the same time.
First, the main steps of the proposed method are described. Then, the
different components of the SPACE model are defined. Finally, two case
studies (on a BDI model and on a graph colouring problem) show how
the method and the model can be applied.
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1 Introduction

For the last decade, in order to answer to the growing interest for multi-agent
systems (MAS) development, several methods, models and tools have been pro-
posed [17,22,14]. Among them, there are some methods [26,12], agents mod-
els [20, 8], MAS models [16] and MAS development environments like Madkit,
Jade, Zeus... [15,21,19]. Our research focuses on the design of a MAS develop-
ment method coupled with a model allowing, at the same time, validation, verifi-
cation or even system proof. Generally, already proposed methods do not provide
enough necessary elements to do this task. Moreover, we want the method to be
a real guide for the developer to help him to analyse and to break up the global
goal of the MAS so as to obtain the structure of the MAS, the different agents,
their goal and their behaviour. Most of existing methods propose only a set of
models which can be used to express different aspects of the MAS but do not
really propose guidelines to apply these models to the problem which must be
solved by the system. Finally, we wish the method to be coupled with models
in order to be able to directly implement specifications obtained by the method.
Unfortunately, models proposed by the existing methods can not often directly
be used to implement the system in a MAS development platform.

In [23], we have described a first development of our method dedicated to
optimisation problems. This method is summarised in the paper. Starting from
an informal problem specification, we show how to obtain the specification of
a set of agents allowing to solve this problem. For this process, we introduce
specification tools such as variants which will be used, in the future, to help



to verify properties of the developed system. Moreover, this method allows to
associate a goal to each agent whose behaviour is described by an automaton.

As for other methods, using this method allows to produce an operational-
isable specification of each agent of a system. In existing methods, this speci-
fication can be expressed in different formalisms like A-UML, Gaia... In every
cases, it must be transformed into an operational specification which can then be
executed. We propose a model which can be used to make this task easier. This
model, called SPACE (Structure, Perception, Action, Comportment and Envi-
ronment) can be seen as an interface between agents model, like BDI, Aalaadin,
Vowel [20, 8, 3]... used to characterise agents behaviour, and their corresponding
implementation in a MAS development environment (figure 1). For example,
the BDI model can be expressed using SPACE model [13]. Once the SPACE
specification of the agents has been obtained, their implementation becomes an
automatic task. Indeed, with the SPACE model, we provide a direct translation
into several MAS development environments like MadKit. So, the SPACE model
has been designed to be used both to specify agents produced by our method and
to implement agents produced by other methods and expressed in higher-level

models.
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Fig. 1. global MAS development process

Using SPACE model allows the developer to avoid the coding step into the
MAS development environment language he wants to use. Moreover, a SPACE
specification of an agent gives the most declarative operational view as possible
of this agent. This property gives the basis to potentially future validations of the



agent implementation by reasoning on its specification in SPACE. Last but not
least, this model must allow to control the consistency of the agent specification.
Indeed, we propose a MAS validation process in four steps :

1. Inner consistency verification of each agent model :
the SPACE model described in this paper, must provide tools to do this
verification. For example, it must be checked that all variables used by the
agent perceptions are defined in the agent model.

2. Inner consistency verification of the MAS model :
this verification must not only take into account all the agents models but
also relations between agents and the number of instances of each agent
model. Suppose for example that a given agent, instance of A model, can
make its job only if n agents, instances of a second B model, are created.
Our model must allow, in this case, to verify that the MAS can always create
these n instances of B model.

3. Agents behaviour validation :
the problem, here, is to be able to answer to the following question : "does
the agent really act as the developer wanted to ?". In other words, does the
effective behaviour of the agent fit to the specified behaviour ?

4. System behaviour validation :
for this validation, the question to which an answer must be given is the
same as the previous one but at a different scale : the entire MAS. As a
consequence, this validation allows to verify that the global behaviour of the
system fits to the system behaviour the developer wanted to obtain.

The inner consistency verification is an aspect that as already been taken
into account in the model and that is presented in the paper. Our research is
currently focused on agent behaviour validation. It is one of the reasons of the
creation of the SPACE model. Indeed, we need a model that has enough formal
materials for validation. We are now working on the validation process itself, that
is to say, specifying how to combine specific properties we have put in SPACE
in order to perform the validation.

The first part of the paper is dedicated to the description of the method we
propose. Then the SPACE model is presented. After these two first parts, two
kinds of applications are presented. The first one shows how BDI specifications
can be expressed with SPACE. The second one shows how the method and the
model have been used to build a multi-agent system for the graph colouring
problem whose main principles and constraints are briefly presented.

2 Method

The goal of our research is to provide a method and also tools to help the analysis
and design of MAS.

As presented in the sequel, the method is based on a top-down approach
which warrants the progress of our system towards a satisfying solution.



2.1 Usage conditions

The method defined here must be used to solve global problems which can be
specified by a set of local constraints (LC). A more restrictive usage condition
is that this method is dedicated to problems for which a trivial (but probably
bad) solution exists.

Of course, for non NP-hard and non distributed problems for which a se-
quential algorithm is known, using agents (and so our method) is rarely a good
solution because communications and synchronisations introduced by MAS make
the program less efficient [25].

An example of a target problem for our method is the graph colouring prob-
lem which consists in colouring a graph with a minimal number of colours in such
a way that two connected nodes do not have the same colour. This application
is presented in section 4.

2.2 The method

Global variant The first thing to do is to define a variant characterising the
problem that the system must solve. A variant is a notion often used to prove
termination of algorithms. A variant is a variable defined on a totally ordered
structure that must decrease at each iteration and that has a lower bound. These
two properties imply the termination of the iterations.

Local decomposition The second step is perhaps the hardest one: the global
problem has to be expressed in terms of local sub-problems. This consists in
dividing the solution of the problem into several parts with respect to LC. These
parts are not necessarily disjunctive. Each part is associated to a local sub-
problem. The resolution of each of these sub-problems must help to solve the
global problem. The ideal case is a sub-problem whose resolution is a necessary
condition for solving the global problem. However, this is not always the case.
An other possibility is a sub-problem whose resolution makes the global variant
decrease.

Agentification Once the global problem has been decomposed, we still do not
have agents. Of course, a first idea could be to assign each local problem to an
agent, but this is not always possible. Indeed, to agentify a problem :

— each sub-problem must be assigned to an agent;
— each property of the problem (piece of data) must be assigned to an agent.

However, each agent perceives only alocal part of the environment. Moreover,
an agent being autonomous, no other agent can modify directly its properties.
These two constraints are called the locality principle. So, if the resolution of
two sub-problems needs to modify the same property, assigning two problems to
two different agents is impossible. A first solution could be to assign properties
to the environment instead of agents. This is an easy solution, but this makes
the environment a central resource for the MAS, limiting the benefit of the
distribution.



A Dbetter solution is to change the structure of the local problems so that
the modification of a property occurs only in the resolution of one sub-problem.
So, each property modification is controlled by one and only one agent. Other
agents that need to get the value of this property must have the agent owning
the property in their accointance set and can know its value by message passing.
Subproblems resulting from this restructuring are called Property Oriented Sub-
Problems (POSP) in the sequel.

This step is necessary (it provides the agents and the accointance relations
of the MAS) and not so difficult to realize as it is shown in this article for the
graph-colouring problem.

Agents behaviour

General behaviour Each POSP is assigned to an agent. So, the general behaviour
of each agent is very simple:

— if its problem is solved, it does nothing (it could also help other agents). The
agent is satisfied;
— otherwise, it tries to find a solution to its problem.

For the global problem, we introduced a variant. We have to do the same
for each POSP in such a way that each time a local variant decrease, the global
variant does not increase. These variants allow to control the progress of each
POSP solving.

Each POSP can be divided into sub-goals whose resolution makes the local
variant decrease. Then, an unsatisfied agent chooses a sub-goal and tries to solve
it.

When a sub-goal has to be solved, there are two cases:

— either it can be solved by the agent: the agent can then choose a new goal;
— or the agent cannot solve it.

There are two reasons making a subgoal unable to be solved:

— either there is a blocking situation: an other agent prevents the active agent
to apply one of its strategies;

— or the agent doesn’t know what to do to solve the subgoal in the given
situation.

In the second case, the agent chooses an other goal or waits for a modification
of the situation. In the first case, the agent attacks an obstructing agent. This
behaviour follows the eco-agent’s one [7]. The attack mechanism is simulated by
sending an aggression message. An agent under attack has to flee so that the
blocking situation disappears, but preserving the local constraints LC. Note that
the fleeing behaviour can increase the local variant. If the agent cannot flee, it
ignores the attack.

In order to help us specifying agents behaviours, we used the formalism of
transducers [1]. This formalism can also be used to specify behaviours of other



kinds of agents [18]. Thus, we define the general behaviour of an eco-agent by a
transducer as detailed in [23].

The method described in this part helps MAS developers to determine and
specify the set of agents (and also their goals and behaviour) which are necessary
to solve the initial problem. The next part describes a model allowing to design
these agents from an implementation point of view.

3 The SPACE model

In this part, we present the different elements of the SPACE agent model. As ex-
plained before, this model is designed in order to be a good compromise between
a purely executable agent specification about which it is not possible to reason
and a more formal specification not really implementable. We try to obtain an
almost runnable agent specification while keeping the most declarative descrip-
tion as possible. As a consequence, the resulting specification can be considered
as an operational one: we provide not only models but an operational semantics
describing the effective operation of the agent from these models.

In SPACE, an agent is represented by three complementary models and a
structure: the perceptions model, the actions model, the behaviour model and
the inner structure.

These different elements are described in the following paragraphs. They are
of course not independent from each other. That’s why they must satisfy a set
of consistency rules which are also described in further section (3.6).

3.1 Perceptions model

This model describes the set of perceptions of the agent, that is to say, whatever is
likely to modify the actions the agent may do. There are four different perceptions
which can be divided into two kinds:

— Message perceptions: they occur when a message is received from another
agent. There are two kinds of messages associated to such perceptions:
e information messages: an Information Message Perception (IMP) is as-
sociated to each kind of information messages,
e request messages: a Request Message Perception (RMP) is associated to
each kind of request message,
— Variables Perceptions: they represent the agent view of some variables. They
are also divided into two kinds of perceptions:
e Environment Variables Perceptions (EVP),
e Inner Variables Perceptions (IVP).

Variables Perceptions (EVP /IVP) These perceptions are connected to in-
ner and environment variables. The environment in which the agent is living is
considered as a set of variables. The environment evolution implies changes on
the values of the variables. A priori, an agent has only a partial and biased view
of the environment. The prey-predator model is a good example of the difference



between the environment and its perception by an agent. A predator only knows
a part of the grid on which it moves. This vision is also biased because it depends
on the agent interpretation. By this way, it is easy to take into account the point
of view of the agent in its behaviour. Thus, some elements of the environment
may be considered differently according to the goal of the agent. For example,
let us consider weather variables like wind, hygrometry and temperature. Using
these variables, an agent can have a perception about the current weather. In
an airport, assuming the wind blows slowly, an agent in charge of planes take off
can discern propitious conditions. Even though, simultaneously, another agent
dedicated to control of a wind farm would estimate the weather conditions are
bad.

An Environment Variable Perception associates a particular value to a subset
of values of significant environment variables for the agent. It allows to design
the agent point of view on the environment. Considering again the three weather
variables, the perception "weather" could have four values: nice, very nice, bad
and very bad. Thus, when the wind speed is lower than 15 MPH, the hygrome-
try fewer than 100% and the temperature between 20°c and 25°c, the weather
perception shall be nice.

Inner variables perceptions rely on the same principles, but they are not based
on the same kind of variables. As it will be presented later, an action performed
by an agent rely on perceptions. As a consequence, we decided to introduce inner
variables perceptions in order to allow the agent to perform actions according to
its own life cycle (its state, its goals, . .. ), and not only in reaction to environment
variations. Inner variables perceptions are very important ones because they
allow to define proactive behaviours. To define such perceptions, it is assumed
that an agent maintains some variables during its life. Generally, these variables
are connected to the problems and goals it has to achieve. They are designed
to manage some aspects of the agent behaviour. If we consider again the agent
in charge of the wind farm, it shall have at least two variables indicating the
number of wind turbines and the number of running ones. Each inner variables
perception allows the definition of significant subsets of variables values which
could modify its behaviour. The agent in charge of the wind power plant shall
have a perception "free turbines" with the value corresponding to the difference
between the total number of turbines and the number of running ones.

Formally, the table 1 describes the 5-tuple (N, C, V, T, F) defining variables
perceptions.

Information Messages Perceptions (IMP) These perceptions are based
on the information messages. These messages contain information sent to the
agent (the receiver). An information message is considered as a set of variables.
Receiving these variables may modify a subset of receiver’s inner variables. Yet,
every values are not necessarily useful to the receiver. An IMP allows to define
which elements of the message are relevant for the receiver. The information
message also provides the way to read and use the information it contains.

These perceptions are defined by a 6-tuple (N, C, S, V, T, F) given in the
table 2.



Name|Type Role

N String Name of the perception

C {EVP, IVP}|Kind of the perception

v {variables} |Set of significant variables
T

F

{values} Set of potential values
Function from V to T describing the value of the percep-
tion according to the value of the concerned variables.

Function

Table 1. EVP and IVP

Name|Type Role

N String Name of the perception

C IMP Kind of the perception

S Class Message structure (name and type of each variable)

A% {inner variables}|List of inner variables the perception may modify

T {true, false} true if the message of class S is in the mailbox; false otherwise

P Function Cas.tlng funCthI'l from S to V describing how to modify inner
variables according to the value of the message.

Table 2. IMP

Request Messages Perceptions (RMP) These perceptions rely on request
messages. These messages allow the sender to ask for information/action to the
receiver. As for information messages, these information may be represented by
values of variables. So, if the receiver decides to take the request into account,
the request message must be saved in the inner structure of the agent in order
to be processed later.

RMP are defined by a 6-tuple (N, C, S, F, T, A) detailed in the table 3.

This is worth noting that the sender may be (and will often be) a field of
the message. This allows the receiver to determine, for instance, which agent it
must send the answer to, or what sort of relationships it has with the sender.

3.2 The actions model

The action model allows to describe the entire set of actions the agent is able
to do. It also allows to describe each action, to describe conditions in which it
can be performed (precondition), and also to describe properties (on inner or
environment variables) always having to be checked after its execution (post-
condition). Actions may consist in reactive behaviours (for instance, in response
to a Request Message) or in proactive ones (i.e. depending on inner variables
related to the current goal of the agent). We can notice that sending messages
is considered as specific actions. The associated precondition describes, in this
case, the time when the agent can send the message.
An action is then defined by a 3-tuple (Pre,M,Post) described in table 4.



Name|Type Role

N String Name of the perception
C RMP Kind of the perception
S Class Structure of the request message

Function defined on S and inner variables with values in {true,
F Function |false} specifying if the request must be taken into account or
must be ignored

T {true, false}|true if the message of class S is in the mailbox; false otherwise

Action responding to the request (by a message sending or not).
A Action The associated event (§ 3.2) must determine when the agent is
able to answer.

Table 3. RMP
Name|Type Role
PRE |Event Erlecm;dition. Precondition are specified by events (see
elow

M Method Describes what the action does.

Postcondition expressed as a set of properties. A prop-
POST |{properties}|erty is a constraint over one or more inner environment
variables.

Table 4. Actions

Definition: An event is a (named) function defined on values of one or more
perceptions or events, with result in B = {True, False}. This notion allows to
specify a significant special context for the agent behaviour, i.e. in which it can
implement specific actions.

For example, if an agent wants to play tennis, several conditions have to
be checked. To express them, an event "tennis condition" will be defined. This
event takes into account values of perceptions as "weather" (see § 3.1) and "free
partner". Thus, this event will be "true" if the "weather" perception value is
"nice" or "very nice", and if the "free partner" perception value is "true".

In a more proactive context like the pray-predator problem, a predator shall
hunt if and only if it is hungry. As a consequence the hunting action may depend
on an event relying on an inner variable perception using a variable evaluating
the feeling of hunger of the agent.

3.3 The behaviour Model

A part of the agent behaviour is formalised by specific automata which are
transducers.
A transducer is defined by a 6-tuple t = (X, v, Q, I, F, §) such that:

— X is a finite input alphabet,



v is a finite output alphabet,

Q is a finite set of states,

— I C Q is the set of initial states,

— F C Q is the set of final states,

— € (Q x X xQ — ) is the application associated to transitions.

To adapt this tool to specify the agent behaviour, we made specific choices
concerning the part assigned to each state and the labels associated to the tran-
sitions [23]. Within the framework of our model, the agent automaton is in fact
the representation of a decomposition of its goals. More precisely, a goal (or
sub-goal) is associated to each state. A transition between two states p and q is
labelled by a couple (E,A) where E is an event which can occur when the agent
decides to leave p. If E occurs, the agent executes the action A and tries to reach
the goal q. We give below the state and transition patterns with more details.

A state p is defined by a 7-tuple (N,L,M,Ve,Vs,V, 7) such that:

— N is a string labelling the state,

— L={(E,A)} is an ordered list of couples (event,action). Notice that an action
A can be performed only if the associated event E is true.

— M is a method, possibly neutral, which sorts actions of L if a specific order
is needed,

— Ve is the set of input variables, i.e. variables the agent can read when it tries
to reach the goal p,

— Vs is the set of output variables, i.e. the ones it can modify during its stay
in state p,

— V is the variant of the goal p,

—  is the choice policy of transitions (ordered list) starting from state p when
several events are true at the same time.

Transitions are defined by a 4-tuple (Ed, Ea, E, A). Such a transition shall
be fired when the current state is Ed and when event E is true. The action A
will then be run and the current state becomes Ea.

3.4 Inner structure of the agent

The inner structure of the agent contains a set of variables which represent, in
real time, the evaluation the agent can do of its own situation. In fact, it corre-
sponds to its knowledge of itself. In this structure, there is a list of known agents
and a memory of received requests. There are also inner variables, especially
those which interact with IVP and IMP.

The list of known agents shall be linked with a qualitative judgement about
the kind of relationship (friends, enemies,...). This could be taken into account,
for example, in the management of RMP decision process. Last but not least,
the inner structure includes the behaviour automaton, and a reference to the
current state in which the agent is.



3.5 Operational semantics

The basic behaviour of the agent is described by the automaton. The agent’s
behaviour in a given state depends whether a method is associated to it or not.
If no method is associated to the state then the list L of pairs (event E, action
A) is processed sequentially else the list L is processed in the order given by this
method. For each pair (E,A), the agent first evaluates the event E. This event
relies on perceptions Pi that are also evaluated at this moment. The evaluation of
messages perceptions implies the checking of the agent mailbox at this moment
too (messages corresponding to the perceptions which are found at this moment
are removed from the mailbox). Messages that do not concern the perceptions
Pi are preserved but not processed. If this event E is true, the action A triggers
(and is not executed if E is evaluated to false). Notice that many actions may
depend on the same event. For instance, the list L could look like { (el, al), (e2,
a2), (el, a3) }. So, the event el will be evaluated twice. It may be true the first
time, and be false the second one. We can make another remark: if the action
a3 must be performed only if al was performed, then the event associated to
a3 must not be el but a new event e3 associated to an IVP relying on an inner
variable set by the action al to tell it was executed.

Once all the pairs of the list L associated to the current state have been
processed, the agent analyses if the goal associated to the current state is reached
(has the variant reached its lower boundary ?):

— if the goal is completed, one of the transitions whose original state is the
current one must be fireable (a fireable transition is a transition whose as-
sociated event is true). The events associated to all the transitions starting
from the current state are evaluated, and therefore the perceptions they are
based on. Thus, a list of fireable transitions is built. A transition is chosen
among the elements of this list, with respect to the defined policy (a random
choice by default). Then, the action of the chosen transition is executed and
the incoming state of the agent becomes the final state of this transition.

— If the goal is not completed, the events associated to all the transitions
starting from the current state are evaluated as described above.

e If there is at least one fireable transition, one is chosen as in the former
situation, the action is executed and the incoming state is reached.

e Otherwise, the agent executes again the current state. When the agent
reaches its final state, it stops.

3.6 Consistency rules

In the SPACE model, an agent is represented by 3 models: the perceptions model,
the actions model and the behaviour model. These three models are not only
complementary, but also interconnected. So, consistency rules have to be defined
between these models to determine if an agent is consistent. They are presented
in the following. These rules have consequences on the inner structure which are
also detailed.



Structure/Perceptions consistency: there is only one simple consistency
rule between these two models concerning the definition of the variables : all the
variables named in the perceptions (IMP and IVP) must be defined in the inner
structure. The existence of this single rule comes from the obvious split of the
model.

Perception/Event consistency: events must rely on perceptions defined
in the perception model or on other events described previously in the actions
model. To determine if an event occurs, values of perceptions or events it relies
on must be specified. These values must be in the type of the perception result
for a perception or in true, false for an event.

Event/Automaton consistency: all the transitions of the automaton must
be labelled by an event defined in the actions model. The precondition of the
action to perform must be the event associated to the transition. Moreover, when
the goal associated to a state s is reached, at least one of the events associated
to the transitions whose initial state is s must be true.

Automaton/Action consistency: the action A of each RMP (taking into
account the answer to a request message) must belong to the actions associated
to the states or to the transitions.

Actions/Inner Structure consistency: the free structure of the actions
makes general consistency rules impossible to define. However, we can notice
that each action must preserve the definition domain of every inner variable it
may modify.

4 SPACE as an intermediate model : application to BDI
specifications

BDI agents rely on three essential characteristics : their beliefs, their desires and
their intentions. Beliefs correspond to how the agents percieve their environment
and their inner state. In our model, beliefs of BDI agents can be easily translated
into perceptions.

Desires correspond to the set of goals an agent may have. In SPACE, the
behaviour of an agent being described by an automaton whose states are associ-
ated to goals, the set of desires of BDI agents will correspond to the set of states
of the automaton.

Finally, intentions correspond to the current goal and eventually to an inten-
tion about next goals or actions. The current goal is represented, in SPACE, by
the current state. Intentions about next goals and actions can be modelized by
inner variables. The latter must be taken into account by the events associated
to transitions.

The typical algorithm describing how a BDI agent works is presented in
figure 2.

This algorithm can also be easily translated into SPACE. The option gener-
ation corresponds to the calculus of the perceptions associated to the transitions
starting from the current state. The choice of the option and the updating of the
intention of the agent correspond to the choice of the transition if several are



wnitial state();
repeat
options := options - generator(event_ queue)
selected_ option := deliberate(options)
update_intention(selected option)
exzecute();
get_new_external_ events();
drop_ successful_ attitudes()
drop _impossible_ attitudes();
end repeat

Fig. 2. BDI agent algorithm

fireable. The executed statement is similar to the standard behaviour of SPACE
agents when they are in a given state. Let us notice that it is not necessary to
translate the get new external_events() function because required events are
automatically evaluated before executing actions. As well, the deletion of suc-
cessful goals is a consequence of the automaton structure. Indeed, solving a goal
implies the evaluation of the transitions coming from the state associated to this
goal. By this way, the current state, and as a consequence the current goal, of
the agent change. Finally, the deletion of impossible attitudes can be taken into
account by adding an inner variable indicating when a goal is impossible. Then,
transitions ending in the state associated to this goal must evaluate this vari-
able. By this way, main concepts of BDI models can be translated into a SPACE
models.

5 Application to graph colouring
5.1 The graph colouring problem

We describe in this part the application of the method and the model presented
before to a graph colouring problem. The general problem is to colour the nodes
of a graph with a minimal number of colours without two neighbour nodes having
the same colour (LC).

The problem of graph colouring being NP-hard, algorithms looking for opti-
mal solutions are numerous [5] but rarely useful for real-size problems. We can
refer to [6,9-11] for various methods trying to solve this problem, and more
precisely to [2,24] for ants algorithms.

The essential characteristic of our solution is that it starts with a correctly
coloured graph but not optimal as far as the number of colours is concerned. For
instance, a trivial initial solution consists in assigning a different colour for each
node. As the time goes, our algorithm tries to suppress colours, keeping a correct
coloured graph. So, the more our algorithm will work, the more pertinent the
proposed solution will be.

For details about graph definitions and properties, it can be referred to [4] for
example. Here are given the main ones used in the sequel. We denote G = (N, E)



an oriented (resp. non oriented) graph with N and E two sets such that elements
of E are ordered (resp. unordered) couples (u,v) € N?, and N N E = (). The
elements of N are nodes, those of E are the edges. Two nodes u,v of G are
neighbours if (u,v) € E. V(u) will denote the set of all neighbours of wu.
Let C(u) the colour associated to a node u, and C'(V (u)) the set of colours of
u neighbours. The k-colouring of a graph G = (IV, E) is the attribution, to each
node, of a colour among k such that, for each edge (u,v) of E, C(u) # C(v).
A graph is k-colourable if a k-colouring can be applied!. The smallest & such
that G is k-colourable is the chromatic number of G and denoted x(G).
In the following, we will consider a k-coloured graph.

For this application, we have to define two new specific notions concerning
nodes. The local chromatic number of a node w is len(u) = maz{|C|,VC clique
of G /u € C}. The current chromatic number of u is cen(u) = |[{c(u)} U
{c(v)/v € V(u)}|. Then, a node u satisfies its len if and only if len(u) = cen(u).
The following properties are used to implement our solution.

Theorem 1. Let G = (N, E) be a graph. For all node uw € N, if G is correctly
coloured, then ccn(u) < len(u).

Theorem 2. Let G = (N, E) a graph, and let x(G) = n. For each node v € N,
we have len(u) < n.

Remark 1. Let us notice that, despite these two theorems, even if all the nodes
of a graph satisfy their lcn, the chromatic number of the graph can not always
be reached. There are also some graphs which can not be coloured such that
each node satisfies its len.

5.2 Application of the method

Global variant The goal is to make decrease the number of colours of the
nodes of a graph which is the chosen global variant. The lower bound of this
variant is the chromatic number of the graph.

Local decomposition The previous property is decomposed into subproblems
for each node. Each node tries to change the colours of its neighbours in order to
make the local variant decrease. This variant corresponds to the node ccn whose
lower bound is the node lcn.

Agentification The previous decomposition does not follow the locality princi-
ple. Indeed an agent should modify the colour of another agent. So, each POSP
consists in the colour modification of a node. The new associated local variant is
the tuple of the ccn of the neighbours of the node. Then, each POSP is assigned
to an agent called a node agent. It can be reached by solving a set of subgoals.
A subgoal consists in decreasing the ccn of a given neighbour. Notice that as
each node agent has at least one neighbour, so its neighbours will make its ccn
decrease.

! For k > 3, decide whether a graph is k-colourable or not is NP-hard.



Agents Behaviour When the POSP assigned to an agent is not satisfied (that
is one of its neighbours has a ccn greater than its lcn), it has to choose a colour:

— existing in the graph;
— making the ccn of the neighbour n decrease;
— being different from the colours of its neighbours.

As a node agent can only see (and communicate with) its neighbours, to find
a colour verifying the two first items enumerated above, it asks to its neighbour
u the colours of its neighbours, which gives a first set C(V (u)), the colours set
of the neighbours of u.

To verify the third point, the active agent a first asks to its neighbours their
colours and constructs the set C(V (a)) of these colours. Then it chooses a colour
among the new set S = C(V (u))\{C(V(a)) UC(a)}2.

If a node agent u can not change its colour, necessarily, the set C(V (u)) is
a member of the set C(V(a)). In such a case, u attacks one of its neighbours
whose colour is in the set C'(V(u)). If it is attacked, it flees, trying to take an
other colour. It chooses a colour among the neighbours’ ones of its neighbours,
which is not a colour in its neighbours’ colours.

Two other agents have to be created for coordination and implementation
reasons. The topological agent creates the initial graph, node agents with their
characteristics (e.g. list of neighbours, initial colours), and a drawer agent giving
a graphic view of the graph updated when colours change.

5.3 Application of the model

In this part, we partially describe the node agents of the graph colouring problem

presented above with the SPACE model. In this section, names of inner variables,

actions, events and perceptions are respectively suffixed by V, A, F and
P.

The behaviour model The global behaviour of a node agent corresponds
to an eco-agent one [7] which is formalised by a transducer described in [23].
The main goal of an agent is to decrease its own ccn as much as necessary.
If it is impossible, it can attack an obstructing neighbour agent. An attacked
agent can flee by changing its own colour. For instance, we detail the state of
the transducer corresponding to an attack. In this state, the agent begins to
evaluate if the attack is possible. If it is the case, the agent determines a target
agent among its neighbours. Then, it sends an attack message to it. Finally, it
analyses its mailbox and updates its goals list. Here is the description of this
state in the SPACE model.

— N = “attack state”;

% The new colour must be different from the previous one, that is why C/(a) is removed
from possible colours.



— L = ((true;setAttackTol A); (true;canIAttack A);
(attacking E;determineTarget A);
(targetExists E;attackTarget A); (true;readMailbox  A);
(true;setupGoal _A); (true;setAttackTo0 A));

— M = void;

— Ve = {neighboursNumber V; neighbours_V;
neighboursColour _V; neighboursNeighbourColour V};

— Vs = {neighboursAttacked V; goals V;attack V};

— V = attack_V;

— m = {attacked_E > satisfied E > unsatisfied E};

Some of the actions or variables used above are described further in the paper.

The inner structure Hereafter is given a part of the inner structure of a node
agent.

— myCCN_V : integer;

— myColour_V : Colour;

— currentState_V : integer;

— neighboursNumber V: integer;

— neighbours_V: list of Agents;

— neighboursColour V: array of Colours indexed by neighbours numbers;

— neighboursCCN _ V: array of ccn values indexed by neighbours numbers;

— neighboursNeighbourColour_V: set of Colours. This is the set C(V(a)) de-
scribed in 5.2.

— goals_ V: list of Goals;

— attack_V: {0; 1};

— neighboursAttacked V: set of (Agent; Colour).

— fleeSuccess V: {true, false} (flag indicating whether the last flee attempt
succeeded).

The perceptions model

Information Messages Perceptions For a node agent, we define four IMP as
described below:

1. Current Chromatic Number Receipt
— N: CCNReceipt_ P
— C: IMP
— S: CCNMessage class with two attributes sender(Agent) and ccn(int)
— V: {neighboursCCN _ V|[sender|}
— F: neighboursCCN _ V[sender]:=ccn
2. Colour Change Receipt
— N: ColourChangeReceipt P
— C: IMP



— S: ColourChangeMessage class with two attributes sender (Agent) and
colour (Colour)

— V: {neighboursColour_ V[sender|; myCCN_V}

— F:neighboursColour _V[sender]|:=colour; myCCN _V := 1 + card(neighboursColour V);

3. Neighbours Neighbour Colour Receipt

— N: NeighboursNeighbourColourReceipt P

— C: IMP

— S: NNCMessage class with two attributes sender (Agent) and colourSet
(Set of Colours)

— V: {neighboursNeighbourColour V}

— F: neighboursNeighbourColour V := colourSet

Request Messages Perceptions For each node agent, we define two RMP called
Attack Receipt and Neighbours Colour Request. We only detail the first one
below. An attack is taken into account only if the agent is not currently fleeing
or if it has just failed to flee.

— N: attackReceipt P

— C: RMP
— S: fleeRequestMessage class with one attribute sender (agent)
— F: (currentStateV != “fleeState” or (currentState 'V == “fleeState” and

fleeSuccess  V == false));
— A: flee_ A (described later).

Inner Variables Perceptions We only give one of them called CurrentState_ P
that allows the agent to have information about its current state.

— N: currentState P

— C: VP

— V: {currentState_V}

— T: state

— F: currentState_ V — currentState V (identity function).

The actions model First, we need to define the three following events :
stateAttack E is an event that is true if the current state is the attack
state :

stateAttack E : {currentState_ P == attack}.

underAttack E is an event that is true if the agent received a flee RequestMes-
sage:

underAttack _E: {attackReceipt_ P == true}

neighboursNeighbourColourReceipt E is an event that is true if the
agent received a NNCMessage :



neighboursNeighbourColourReceipt E:
{neighboursNeighbourColourReceipt P == true}

Here are now two examples of actions relying on these events:
setAttackTol A:

— PRECONDITION: stateAttack E

— METHOD: attack V :=1;

— POSTCONDITION: attack V==1

Another kind of action is a response to a request message. This is for in-
stance the case of the flee A action. By this action, the agent tries to change
its colour. It searches a colour among the set of the colours of the neighbours of
its neighbours (globalnnc) and that is not a colour of its own neighbours.

flee A:
— PRECONDITION: underAttack E;
— METHOD:

globalncc: set of colours of all neighbours of neighbours

neighboursNumber: number of remaining awaited answers

globalnnc := ()

broadcastMessage(NeighboursColourRequestMessage);

neighboursNumber := card(neighbours V);

while (neighboursNumber # 0) {

neighboursNeighbourColour 'V = §;

while(! neighboursNeighbourColorReceipt E);

globalnnc = globalnnc U
neighboursNeighbourColor V;

}

globalnnc = globalnnc -

(myColour _V U neighboursColour V);

if (globalnnc # 0) {

myColour V = choice(globalnnc);

fleeSuccess  V = true;

broadcastMessage(ColorChangeMessage(me, myColour _V));
}
else

{fleeSuccess_V = false;}

— POSTCONDITION: true;

6 Conclusion and future work

The method we presented in this paper helps to design a multiagent system to
solve a given problem. It gives guidelines to decompose problems for agentifica-
tion. The goal of the SPACE agent model is to help to specify, and then to imple-
ment resulting agents, while keeping some essential properties. Indeed, our aim
is to design a model so as to be a good compromise between a purely executable



agent specification and a too formal one not really implementable helping both
to implement and to validate the agent behaviour. These two goals, nearly con-
flicting, are not both reached in other models such as Metatem [12] or Gaia [26]
for example, in which many aspects are either too or not enough formal. Speci-
fications of agents in Metatem are hard to write because expressed in temporal
logic. Moreover, no proof obligation rule is defined. In Gaia, essentially built to
give a method, many aspects are not formal enough to make a system validation
possible. For instance, there is no semantics specifying how many roles taken
into account by a unique agent work together. Our requirements about SPACE
imply the existence of variants, accurate descriptions of perceptions, actions and
events, but also consistency rules allowing to verify the inner consistency of the
model when applied to a particular agent specification.

The first outlook of this work is to provide multiple implementations of
SPACE in different MAS development platforms in order to make the model
easily usable. Secondly, we would try to integrate SPACE in the complete chain
from the definition of a problem to an efficient MAS solving it. More precisely,
the goal is to extend the method in order to produce an agent model expressed
with SPACE. This step is necessary because of the richness of the model in-
duced by its declarative aspect. This method must also provide tools allowing
to exploit the different components of the SPACE model in order to check and
validate agents and then the MAS. Application of the method to problems with
no trivial solution should also be studied. Further steps will be to search an
adaptation of these tools to other kinds of problems.
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