A methodology to solve optimisation problems
with MAS
application to the graph colouring problem

Gagle Simon, Marianne Flouret, Bruno Mermet

LIH, Université du Havre, 76058 Le Havre Cedex, France
{Gaele.Simon, Marianne.Flouret, Bruno.Mermet}@univ-lehavre.fr

Abstract. Developing multi-agent systems may be a rather difficult
task. Having confidence in the result is still more difficult. In this article,
we describe a methodology that helps in this task. This methodology is
dedicated to global optimization problems that can be solved combining
local constraints. We developed CASE tools to support this methodol-
ogy which are also presented. Finally, we show how this methodology
has been successfully used to develop a multi-agent system for the graph
colouring problem.

Keywords: multi-agent system, methodology, graph colouring.

1 Introduction

Many methods already exist to built multi-agent systems (MAS) [12, 15]. Theses
methods are composed of a set of models, but there is often a lack of methodol-
ogy to help to transform real system specifications into a modelization provided
by the method. [18,1]. In this paper, we introduce the bases of a methodol-
ogy associated to a method to develop multiagent systems that are dedicated
to optimization problems. The first part of the article presents essentially the
methodology. In the second part, we introduce a system made of java classes we
developed to help us to write agents derived from our methodology. Finally, in
the third part, we present an application of our methodology to a particular
problem : the graph colouring problem. Using the methodology and the system
presented before, we developed a MAS for the graph colouring problem.

2 Methodology

The goal of our research is to have a method, a methodology and also tools to
help the analysis and design of distributed problem solving by MAS.
An important aspect of our methodology is that :
— at any time, the system can be stopped ;

— from time to time, the solution proposed by our system gets better and
better.

As presented in the sequel, the methodology is based on a top-down approach
which guaranty the progress of our system towards a good solution.

2.1 Usage conditions

The methodolgy defined here must be used to solve global problems which can
be specified by a set of more local constraints (LC). A more restrictive usage
condition relies in the fact that this methodology is dedicated to optimisation
problems for which a trivial (but bad) solution exists.

Of course, for non NP-hard and non distributed problems for which a se-
quential algorithm is known, using agents (and so our methodology) is rarely a
good solution because communications and synchronisations introduced by MAS
make the program less efficient [17].

An example of a target problem for our methodology is the graph colouring
problem which consists in colouring a graph with a minimum number of colors in
such a way that two connected nodes do not have the same color. This application
is presented in section 5.

2.2 The methodology

Global variant The first thing to do is to define a variant : a notion often
used to prove termination of algorithms. A variant is a variable defined on a
totally ordered structure that must decrease at each iteration and that has a
lower bound. These two properties imply the termination of the iterations.

Local decomposition The second step is perhaps the hardest one : the global
problem has to be expressed in terms of local sub-problems. This consists in
dividing the solution of the problem into several parts. These parts are not
necessarily disjunctive. Each part is associated to a local sub-problem. The res-
olution of each of these sub-problems must help to solve the global probem. The
ideal case is a sub-problem whose resolution is a necessary condition for solving
the global problem. However, this is not always the case. An other possibility is
a sub-problem whose resolution makes the global variant decrease.

Agentification Once the global problem has been decomposed, we still do not
have agents. Of course, a first idea could be to assign each local problem to an
agent, but this is not always possible for the following reason.

To agentify a problem, two types of constraints must be considered :

— each sub-problem must be assigned to an agent ;
— each property (piece of data) must be assigned to an agent.

Each agent perceives only a local part of the environment. Moreover, an agent
being autonomous, no other agent can modify directly its properties. These two
constraints are called the locality principle. So, if the resolution of two sub-
problems rely in modifying the same property, assigning two problems to two
different agents is impossible. A first solution could be to assign properties to the
environment. This is an easy solution, but this makes the environment a central
resource for our MAS, limiting the benefit of the distribution.

A Dbetter solution is to change the structure of the local-problems so that
modifying a property can occur only in the resolution of one sub-problem. So,
each property modification is controlled by one and only one agent. Other agents
that need to get the value of this property must have the agent owning the

property in their accointance set and can know its value by message passing.
Sub-problems resulting from this restructuring are called Property Oriented Sub-
Problems (POSP) in the sequel.

This step is necessary (it provides the agents and the accointance relations
of the MAS) and not so difficult to realize as it is shown in this article for the
graph-colouring problem.

Agents behaviour We consider the agents as reactive and social ones, that
is they can react to changes of their environment and communicate with other
agents.
General behaviour Each POSP is assigned to an agent. So, the general behaviour
of each agent is very simple :

— if its problem is solved, it does nothing (it could also help other agents). The

agent is satisfied ;
— otherwise, it tries to find a solution to its problem.

Solving a problem For the global problem, we introduced a variant. We have to
do the same for each POSP in such a way that each time a local variant decrease,
the global variant does not increase.

Each POSP can be divided into sub-goals whose resolution makes the local
variant decrease. Then, a not satisfied agent chooses a sub-goal and must solve
it.

When a sub-goal has to be solved, there are two cases :

— either it can be solved by the agent : the agent can then choose a new goal ;
— or the agent cannot solve it.
There are two reasons making a subgoal unable to be reached :
— either there is a blocking situation : an other agent prevent the acting agent
to apply one of its stategies ;
— or the agent doesn’t know what to do to solve the subgoal in the given
situation.
In the second case, the agent chooses an other goal or waits for a modification
of the situation. In the first case, the agent attacks the obstructing agent. This
behaviour follows the eco-agent’s one [7]. The attack mecanism is simulated
by sending an agression message. An agent under attack has to flee so that the
blocking situation disappears, but preserving the local constraints LC. Note that
the fleeing behaviour can increase the local variant. If the agent cannot flee, it
ignores the attack.

In order to help us specifying problems agents behaviours, we used the for-
malism of automata with multiplicities [2]. This formalism can also be used to
specify behaviours of other kinds of agents [13]. Thus, we defined the general
behaviour of an eco-agent by the automaton shown figure 1.

XY ={Init,S,NS, A, IC,E} is the set of the following perceptions :

Init : Synchronization signal,
S : goal satisfied,
NS : goal unsatisfied,
A : attacked by an other agent,
IC : main action impossible,

E:

E/s

Fig. 1. eco-agent : general behaviour

stop signal.
The set of elementary actions (behaviour primitives), performed when a state

is reached, is defined by {In,L,C,Sa,At,St,F,Fa} with

In:
L:
C:

Sa :

At :

St :
F

Fa :

initialization of agent parameters,
lauching agent functionalities,
main action itself,

satisfied message,

agression,

stop process,

flee,

final message.

To help us developping MAS whose agents are specified by automata with

multiplicities, we developped Java classes that are described in the next section.

3 System : CASE Tools dedicated to our agents

3.1 Presentation of the system

In order to help developers in coding agents specified by automata with mul-
tiplicities, Java classes have been developed by our team. These classes give to
the programmer an upper level to the MAS platform Madkit on which they
rely [14]. These classes can however be easily adapted to other contexts because
their concepts are general.

The Madkit plateform is based on a multiagent model (agent, group, role)

proposed in the Aalaadin method [8].

ismember

—

1 is defined for

handles

—
Agen_‘c| Role

Fig.2. AALAADIN concepts

In this model, an agent is defined as an autonomous and communicating
entity that can play a given number of roles in one or more groups. A group is a
set of agents. A semantic is given to groups at the design step, depending of the
application. Roles are functionnalities (or services) performed by the agents in
a given group. There is no other constraint in this model. Moreover, the inner
structure of each agent is unspecified.

Madkit provides an Agent class based on three main methods :
— activate : describes actions to perfom when the agent is initialized ;

— live : specifies the general behaviour of the agent ;
— end : lists actions to be executed when the agent dies.

To develop its application, the developer must create its own classes extend-
ing the Agent class. The three methods described above must be written using
primitives provided by Madkit, helping to managing groups, roles, communica-
tions, etc.

The classes, we developed and we present in this section, specialize the Agent
class of Madkit to help to describe the agent’s behaviour. According to the first
part of this article, here are the concepts our system helps to manage :

— description of the general behaviour of the agent by an automaton with
multiplicities ;

— description of the set of perceptions of the agent

— description of actions associated to perceptions ;

— description of the behaviour of the agent according to its inner state.

These four concepts are available thanks to two main classes : the Automate
and AgentAuto classes.

The Automate (automaton) class The goal of this class is to provide func-
tionnalities to built and use automata with multiplicities. In this class, each state
is caracterized by :

— a number n ;
— amethod etat,, describing the behaviour of this agent in state n. This method
must be written in the class representing the agent (presented below).

Following the definition given in [2], each transition of the automaton is
specified by a 4-uple (initial state, final state, perception, action). Initial and
final states are represented by their number. The perception is identified by a
method that is executed to determine wether the perception is valid or not. If it

is valid, the transition may be fired. The action is identified by a method that is
executed if the corresponding transition is activated. Both methods representing
the perception and the action must be defined in the class describing the agent.

The Automaton class provides to the user the two following main methods :

— setTransition : a method to add a transition to the automaton. The four
parameters correspond to the four characteristics of a transition ;

— transiter : this method determines valid transitions in the current state by dy-
namic invocation. If many perceptions are valid, a method choiz_ perception
(choose perception), defined in the class associated to the agent, is executed
to determine the transition to fire. The associated action is executed (by
dynamic invocation). Finally, the method associated to the final state is
executed.

AgentAuto class This class inheritates from the Agent class of Madkit. It allows
to implement an agent whose behaviour is described by an automaton with
multiplicities. The caracteristics of this class are the following :
— definition of the live method : the standard algorithm looks like this :

current_state = initial_state;

execute the initial_state method

while (current_state != final_state)

current_state = transiter(current_state);

— definition of the choiz_ perception method : this method tells to the Automate
class which perception must be chosen when several are valid at the same
time. A default version, written in the AgentAuto class, chooses a perception
randomly.

Using classes described above To define an agent, a developer has to write
a class MyAgent inheritating from the AgentAuto class defining at least the
activate, etat;, perception and action methods as shown in the following example.

3.2 A toy example
We want to write an agent with the behaviour described figure 3.

hungry outOfFood

Fig. 3. behaviour of a simple agent

tired

This behaviour can be built on 4 properties :

private int food_storage;
private int tiredness;

private boolean hasFood;
private boolean isNoMoreTired;

The automaton is defined using the setTransition method in the constructor.
Here are three examples of methods :
— a method associated to a state, the playing state :
public void etat1() {// I play
foodStorage-=2;
tiredness++;

}

— a perception method, the tired perception :
public boolean isTired() {return (tireness > 5);}

— an action to perform when a state change is performed, the tiredAction
method :
public void tiredAction()
{System.out.println("I am tired") ;isNoMoreTired=false;}

4 Application to graph colouring

4.1 The graph colouring problem
We give in this part the application of the methodology presented before to a
graph colouring problem. The general problem is to color the nodes of a graph
with a minimal number of colors (optimisation) without two neighbour nodes
having the same color (local constraint).

The problem of graph colouring being NP-hard, algorithms looking for opti-
mal solutions are numerous [5] but rarely usefull for real-size problems. We can
refer to [6,9-11] for various methods trying to solve this problem in which two
connected nodes never must have the same colour, and more precisely to [3, 16]
for ants algorithms.

The essential characteristic with our solution is that it starts with a correctly
coloured graph but not optimal as far as the number of colours is concerned. For
instance, a trivial initial solution is to assign a different color for each node. As
the time goes, our algorithm tries to suppress colors, keeping a correct coloration
of the graph, and, at any time, we can stop our algorithm and obtain a correctly
coloured graph. Obviously, the more our algorithm will work, the more pertinent
the proposed solution will be.

4.2 Some coloured graph properties

For details about graph definitions and properties, it can be refered to [4] for
example. Here are given the main ones used in the sequel. We will denote
G = (N,E) an oriented (resp. non oriented) graph with N and E two sets
such that elements of E are ordered (resp. unordered) couples (u,v) € N2, and

NN E = (. The elements of N are nodes, those of E are the edges. Two nodes
u,v of G are neighbours if (u,v) € E. V(u) will denote the set of all neighbours
of u.

Let C(u) the color associated to a node u, and C(V (u)) the set of colours of
u neighbours. The k-colouring of a graph G = (N, E) is the attribution, to each
node, of a colour among k such that, for each edge (u,v) of E, C(u) # C(v).
A graph is k-colourable if a k-colouring can be applied'. The smallest k¥ such
that G is k-colourable is the chromatic number of G and denoted x(G).
In the sequel, we will consider a k-coloured graph.

For this application, we have to define two new specific notions concerning
nodes. The local chromatic number of a node u is len(u) = maz{|C|,VC clique
of G /u € C}. The current chromatic number of u is cen(u) = |[{c(u)} U
{c(v)/v € V(u)}|. Then, a node u satisfies its len if and only if len(u) = cen(u).
The following properties are used to implement our solution.

Theorem 1. Let G = (N, E) be a graph. For all node u € N, if G is correctly
coloured, then cen(u) < len(u).

Theorem 2. Let G = (N, E) a graph, and let x(G) = n. For each node u € N,
we have len(u) < n.

Remark 1. Let us notice that, despite these two theorems, even if all the nodes
of a graph satisfy their lcn, the chromatic number of the graph can not always
be reached, or some graphs cannot be coloured such that each node satisfies its
len.

4.3 Application

Global variant Our goal is to make decrease the number of colours of the
nodes of a graph (the chosen global variant), trying to reach the graph chromatic
number.

Local decomposition The previous property is decomposed into subproblems
for each node : the algorithm tries to turn its cen down while it does not satisfy
its len.

Agentification The previous decomposition does not follow the locality princi-
ple (to make its ccn decrease, an agent should modify the color of another agent).
So, the POSP of our general problem are to make the ccn of the neighbours of
a node u decrease, changing the color of u. Then, each POSP is assigned to an
agent called a node agent. It can be reached by solving a set of subgoals (de-
creasing the ccn of a giben neighbour). Notice that as each node agent has at
least one neighbour, its neighbours will make its ccn decrease.

! For k > 3, decide wether a graph is k-colourable or not is NP-hard.

Agents Behaviour When the POSP assigned toan agent is not satisfied (that
is one of its neighbours has a ccn greater than its len), it has to choose a color :

— existing in the graph ;
— making the cen of the neighbour n decrease ;
— being different from the colors of its neighbours.

As a node agent can only see (and communicate with) its neighbours, to find
a color verifying the two first items enumerated above, it asks to its neighbour
u the colors of its neighbours, which gives a first set C(V (u)), the colors set of
the neighbours of .

To verify the third point, the acting agent a first asks to its neighbours their
colors and constructs the set C'(V (a)) of these colors. Then it chooses a color
among the new set S = C(V (u))\{C(V(a)) U C(a)}>.

If a node agent u cannot change its colour, necessarily, the set C'(V (u)) is
a member of the set C'(V'(a)). In such a case, the node agent u attacks one of
its neighbours whose color is in the set C'(V (u)). If it is attacked, it flees, trying
to take another color. It chooses a color among all ones of the neighbours of its
neighbours, but not a color of its neighbours.

Two other agents have to be created for coordination and implementation
reasons. The topological agent creates the initial graph, node agents with their
characteristics (e.g. list of neighbours, initial colors), and a drawer agent giving
a graphic view of the graph updated when colors change.

Now we can precise the structure of the automaton with multiplicities which
defines the node agents behaviour. It has been given in figure 1 of paragraph 2.2
under its general form. With the notations of figure 1, we associate the IC
perception to the impossibility to change its own colour, and the C' action to the
fact of recolouring itself.

5 Conclusion and future work

The last part presented an application of the methodology presented before to a
graph colouring problem. It allowed to illustrate that the methodology presented
in this paper can be applied to real problems.

Our research now leads in adding to the methodology a fully specified method
with formal or semi-formal models (like, for instance, automata with multiplici-
ties presented here) to help designers of MAS.

CASE-Tools will also have to be developed to support both the methodology
and the method.

References

1. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE:
Modelling multi-agent systems in a compositional formal framework. Int Journal
of Cooperative Information Systems, 6(1):67-94, 1997.

% The new color must be different from the previous one, that is why C(a) is removed
from possible colors.

10.

11.

12.

13.

14.

15.

16.

17.

18.

V. Jay D. Olivier C. Bertelle, M. Flouret and J.-L. Ponty. Automata with multi-
plicities as behaviour model in multi-agent simulations.

F. Comellas. An ant algorithm for the graph colouring problem.
http://citeseer.nj.nec.com/112038. html.

R. Diestel. Graph Theory. Springer-Verlag, New-York, 2000.

dimacs92. Clique and coloring problems, a brief introduction, with project ideas,
1992. ftp://dimacs.rutgers.edu/pub/challenge.

Raphaél Dorne and Jim-Kao Hao. A new genetic local search algorithm for graph
coloring. In Agoston E. Eiben, Thomas Béck, Marc Schoenauer, and Hans-Paul
Schwefel, editors, Parallel Problem Solving from Nature — PPSN V, pages 745-754,
Berlin, 1998. Springer. http://citeseer.nj.nec.com/dorne98new.html.

A. Drogoul. De la simulation multi-agents & la résolution collective de problémes
: une étude de ’émergence de structure d’organisation dans les systémes multi-
agents. PhD thesis, Univ. Paris VI, 1993.

J. Ferber and O. Gutknecht. Aalaadin: a meta-model for the analysis and design
of organizations in multi-agent systems, 1998.

G. Ribeiro Filho. Improvements on constructive genetic approaches to graph col-
oring. http://citeseer.nj.nec.com/242708.html.

G. Ribeiro Filho and G. Lorena. A constructive genetic algorithm for graph col-
oring, 1997. http://citeseer.nj.nec.com/filho97constructive.html.

G. Ribeiro Filho and G. Lorena. Constructive genetic algorithm
and column generation: an application to graph coloring, 2000.
http://citeseer.nj.nec.com/filho00constructive.html.

Carlos Iglesias, Mercedes Garrijo, and José Gonzalez. A survey of agent-oriented
methodologies. In Jorg Miiller, Munindar P. Singh, and Anand S. Rao, editors,
Proceedings of the 5th International Workshop on Intelligent Agents V : Agent
Theories, Architectures, and Languages (ATAL-98), volume 1555, pages 317-330.
Springer-Verlag: Heidelberg, Germany, 1999.

Bruno Mermet. Formal model of a multiagent system. In Robert Trappl, editor,
Cybernetics and Systems, pages 653—658. Austrian Society for Cybernetics Studies,
2002.

J. Ferber O. Gutknecht and F. Michel. Madkit : une expérience d’architecture de
plateforme multi-agent générique. 2000.

Arséne Sabas, Sylvain Delisle, and Mourad Badri. A comparative analysis of multi-
agent system development methodologies : Towards a unified approach. In Robert
Trappl, editor, Cybernetics and Systems, pages 599—604. Austrian Society for Cy-
bernetics Studies, 2002.

A. Vesel and J. Zerovnik. How good can ants color graphs? Jour-
nal of computing and Information Technology - CIT, 8:131-136, 2000.
http://citeseer.nj.nec.com/443529.html.

Michael Wooldridge and Nicholas R. Jennings. Pitfalls of agent-oriented develop-
ment. In Katia P. Sycara and Michael Wooldridge, editors, Proceedings of the 2nd
International Conference on Autonomous Agents (Agents’98), pages 385-391, New
York, 9-13, 1998. ACM Press.

Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia methodol-
ogy for agent-oriented analysis and design. Autonomous Agents and Multi-Agent
Systems, 3(3):285-312, 2000.

