
Specifying, Verifying and Implementing a MAS:

A case study

Bruno Mermet, Gaële Simon, Bruno Zanuttini, Arnaud Saval

GREYC - UMR 6072

Abstract. This paper deals with the design of multi-agent systems. We
demonstrate the goal-oriented agent model called Goal Decomposition
Tree on an already studied multi-agent example, that of robots which
must clean pieces of garbage on Mars. As we show, the model allows
to prove that the agents’ behaviour indeed achieves their goal. We then
compare our approach to other ones.

1 Introduction

Goal Decomposition Trees (GDT) have been introduced by Simon et al. [19] as
a model for specifying the behaviour of agents in a multi-agent system (MAS)
together with a complete approach for the design of MAS. This approach consists
in three steps:

1. an agentification step which helps the designer to determine the set of
agents which must be used to implement a given system;

2. a behaviour specification step using an agent design model (GDT) which
helps to design an agent behaviour that can be verified by a specific proof
system;

3. an implementation step using an implementation model based on au-
tomata which can be automatically generated from the agent design model.

Thus the aim of this global approach is to provide a complete MAS design
process starting from the problem specification and ending with an implemen-
tation. Central to this approach is the fact that it allows to produce verified
implementations of agents’ behaviours.

The goal of this paper is to present two important add-ons to the GDT
model and to demonstrate the second point above and the associated proof step
on an already studied example: two robots which must clean pieces of garbage
on Mars. The main add-on consists in the introduction of external goals to the
model: this is an important step to the verification of a whole multi-agent system.
The second one allows to increase the power of the proof system thanks to the
introduction of the Guaranted Properties in case of Failure. The scenario studied
has been proposed by Bordini et al. [2] for demonstrating model checking of
Rao’s AgentSpeak language [16]. They have proposed agents’ behaviours for this
scenario and verified them using model checking. We have chosen this scenario
because the goal of [2] (i.e. behaviour specification and proof) is very close to
ours.



Thus this example allows us to compare the GDT model to the AgentSpeak
one. We specify the agents’ behaviour using the GDT model, mimicking as much
as possible the behaviour specified by Bordini et al. in order to facilitate the com-
parison. It turns out that the GDT model is as rich and concise as AgentSpeak,
and allows more elements to be formally taken into account, especially (atomic)
actions. Moreover, the GDT model also allows to prove the correctness of the
agents’ behaviours, whatever the number of pieces of garbage or the size of the
grid modelling the surface of Mars. This is to be opposed to the model checking
method presented by Bordini et al., which only allows to verify the MAS on a
finite number of grids in finite time (5× 5 grids with 2 pieces of garbage in the
paper).

The paper is organized as follows. In Sections 2 and 3 the GDT model, its new
extensions and its proof system are specified. Then we present the Mars scenario,
specify the behaviours of the agents using GDTs and verify their correctness
(Section 4); in the light of this example, we compare our model to the AgentSpeak
language in details. Then we compare our work to other approaches (Section 5),
and finally we conclude.

2 Goal Decomposition Trees

In our approach, the behaviour of agents are represented by Goal Decomposition
Trees (GDT). These are trees whose nodes are goals, defined by a satisfaction
condition and associated either to atomic actions or to further decompositions
into subgoals. The GDT of an agent specifies its whole behaviour, and the sat-
isfaction condition of its root node is thus its main goal. GDT are presented in
details in [19], but we give here the notions relevant to the paper.

Nodes As already said, nodes (either leaves or internal nodes) correspond to
the goals of the agent. To each node G a satisfaction condition (SC) is associated.
Intuitively, a goal is satisfied if and only if its SC is made true. SCs are expressed
over a restricted form of temporal logic, in which the states of variables used
before and after trying to achieve the goal can be distinguished. For instance, if
the SC of goal G is x′ > x∧x′ 6= 0, G is achieved if x has been incremented and
is now nonnull.

Actions The behaviour associated to a leaf goal (except external goals, de-
tailed later) is described either by a list of assignments or by a named action
(NA), i.e., an atomic action which consists in a name, a list of parameters, a
precondition and a postcondition. Intuitively, the postcondition must entail the
SC of the leaf goal.

Operators Each internal node of a GDT is associated to a decomposition
into subgoals, linked up with an operator. Eight such operators are defined
in [18]. For instance, SeqAnd is a classical lazy and ordered logical And op-
erator, and Iter allows to repeat a subgoal until the parent goal is achieved.
Importantly, operators are associated to automata composition patterns, which
are used incrementally to build the complete automaton which implements the
behaviour specified by the GDT. For more details see [18].



Typology of goals In order to add flexibility to the specification and to take
nondeterminism into account, goals have types according to two criteria. First of
all, a goal (internal or leaf) can be necessarily satisfiable (NS) or not (NNS). In
the former case, the decomposition into subgoals or the action associated to the
goal always makes its SC true. In the latter case, the decomposition or action
may fail to satisfy the goal. For instance, for an internal goal decomposed thanks
to an AND operator, the father goal may fail if one of its subgoal fails. But if both
subgoals succed, also does the father goal.

Orthogonally, goals can be lazy (L) or not (NL). When the agent has to
achieve an L goal, it first checks whether its SC is true, and only in the negative
executes the decomposition or action. On the contrary, the agent must always
execute the decomposition or action of an NL goal. E.g., SCs which directly link
the values of the variables before and after the goal execution, such as x′ > x,
can be associated to NL goals only.

Along with these two criteria, the types of each internal node in a GDT can be
automatically determined by the types of its children together with the semantics
of the decomposition operator. Consequently, if specified by the designer, types
can be used to check the consistency of the specification.

External goals External goals have been added to the model presented
in [19]. Such a goal E in the GDT of an agent A is one which A cannot achieve
(for instance because it depends on variables that A does not control). Thus
an SC is as usual associated to E, but no action or decomposition, because
another agent (verifying an external property P ) is expected to make it true.
Consequently, in this article, an external goal is an NS leaf goal together with
a link to a goal G in another GDT. The semantics is that when it must achieve
E, agent A waits until an agent with this latter GDT achieves its goal G, which
will make the SC of E true.

External goals are a way to express dependencies between agents, that is
to say collaborative agents. In particular, it can be seen as a specialization of
“nonlocal tasks” of TAEMS (there is no contracting with our external goals).
Moreover, an external goal as the left operand of a SeqAnd can be seen as a spec-
ification of an “enables” interrelationship in TAEMS. A more detaild comparison
with TAEMS can be found in [19].

GDTs A GDT is a tree built up from nodes as specified above. In addition,
the following are associated to a GDT.

A set of variables specifies all environment variables together with a set of
internal variables of the agent. All formulas are built upon this set. A triggering
context (TC) specifies when the agent must execute its GDT (either the first or
each time it becomes true, depending on the agent). A precondition (PrecGDT )
is also given, which must be satisfied before the execution begins. In particular,
a given initialisation clause achieves it when the agent is created, and for GDT
executed several times, the precondition must be true again after each execu-
tion (in other words, before any GDT execution, PrecGDT is true). Finally,
an invariant describing the constraints of the problem is given, which must be
preserved through the whole execution.



3 The Proof process

Our aim is to prove the correctness of the GDT built for an agent (i.e., to
prove that the behaviour specified by the tree always achieves the main goal
of the agent). For each operator described in section 2, several proof schemas
are defined according to types of goals. These schemas are intended to produce
Proof Obligations that describe what must be proved in order to validate a goal
decomposition. These schemas have been proved to be correct with respect to a
semantics of GDTs in LTL not described here and under the assumption that
actions are atomic and that parallelism can be represented by an interleaving
model.

Since a future goal is to use a theorem prover to perform proofs, proof schemas
are built in a rigorous manner to be automatized. Moreover, the compositional
aspect of proofs makes proof simple, maximizing the success rate of an automatic
theorem prover.

Applying these schemas to a GDT results in an agent’s behaviour composi-
tional proof. Each proof is performed using a context that can be computed by
a context propagation schema associated to each operator that is not described
here but that can be found in [13].

3.1 Notations

Variables The set of environment variables is denoted by Ve, and the set of
internal variables of a given agent by Vi. For each agent, we assume Vi ∩ Ve = ∅,
and whewe define V = Vi∪Ve. Internal variables cannot be modified by another
agent, while environment variables are variables that the agent can see and
modify, but so can other agents or the environment itself.

Goals The SC of a goal G is written SCG. For the proof process, a context
is also associated to G, which intuitively expresses what is known to be true
when G is about to be attempted. In particular, the context of the main goal
is TC ∧ PrecGDT (defined in section 2), and the context of the other nodes is
inferred from the GDT by context propagation schemas no detailed here. The
context of G is written CG. Finally, still for the proof process, something has to
be known about the outcome of the resolution attempt of an NNS goal. This is
expressed by a Guaranted Property in case of Failure (GPF). The semantics is
that if the solving process of a goal fails (to satisfy its SC), then its GPF is still
true. The GPF of a goal G is written GPFG.

GDTs The triggering context of a GDT is written TC, its precondition is
written PrecGDT , its initialisation clause (an assignement) is written initand
its main goal is denoted MG. Its invariant is written I = IS ∧ IA, where IS is
the invariant of the system (over Ve) and IA is that of the agent over V .

Temporal notation In the SC of a goal G, the value of a variable x

before and after executing the actions or decomposition associated to G are
distinguished by primes: e.g., x′ < y means that the value of x after the agent
has tried to achieve G is less than that of y was before this attempt.

However, if the SC does not relate both moments, only unprimed variables
are used. This is for sake of consistency when considering the evaluation of the



SC of a lazy goals, before any execution. For instance, if the goal is to set x

to at least 2, then its SC is written x ≥ 2. In the proof schemas we thus use
a function, denoted T , such that for any goal G, primed variables in T (SCG)
describe relations between the variables when G is achieved. Thus, for instance,
T ((x′ < y)) = (x′ < y), while T ((x ≥ 2)) = (x′ ≥ 2).

substitution We note [x := y]P the syntactic substitution of any free oc-
curence of x by y in P .

Transition between two goals solving process When considering two
goals G1 and G2 resolved sequentially (e.g., when proving a SeqAnd decompo-
sition), From the point of view of the agent, three states can be distinguished:
S, the state right before the solving process of G1, Stmp, the state between the
G1 and G2 solving processes, and S′, the state right after the solving process
of G2. to unify variables v′ after the G1 solving process with the variables v

before the G2 solving process corresponding both to the value of variable v in
state Stmp, we replace them by variables vtmp by the two following substitutions:
[v′ := vtmp]SCG1 and [v := vtmp]SCG2 .

Projection if F is a temporal logic formula and Sv a set of variables, we write
FSv

the projection of F to the variables of Sv. For instance, if F = x < y∧x > 3,
Fx = x > 3. If Sv = Vi, we simply FVi

by Fi.

3.2 Proof schemas

In this section, a few proof schemas are detailed. The normal proof process re-
quires to prove that the invariant is preserved by each goal of the GDT. However,
when a GDT is fully specified, performing this proof for leaf goals is enough.

In addition, since most of the goals of R1 in the following case study are NS,
we give proof schemas only for this kind of goals, and so GPFs are not involved.
However, as one of the Iter operator in the example has an NNS subgoal, the
Iter proof schema is given for this kind of subgoal.

Initialisation one must prove:

[init](PrecGDT ∧ IA) (1)

Moreover, for agents that can execute their GDT several times, the following
property must also be proved:

I ∧ T (SCMG) ∧ T (I )⇒ T (PrecGDT ) (2)

SeqAnd: Proving A ⇐ B SeqAnd C (when A is NL) requires to prove:

I ∧ CA ⇒

({

[v′ := vtmp] T (SCBi
)

[v := vtmp] T (SCC)

}

⇒ T (SCA) ∧ T (I)

)

(3)

From the point of view of the agent, the state of its internal variables (and
only them) after its attempt to achieve B is unchanged when it begins to try
to achieve C; hence the substitutions of v′ by vtmp and of v by vtmp and the
projection SCBi

onto the internal variables. Finaly, if A is lazy, the schema is
the same, with ¬ SCA as an additional hypothesis.



For instance, let consider the following example, where x is an internal vari-
able of the agent:

I = x ∈ N

CA = true

SCA = x′ = 2x + 2
SCB = x′ = x + 1
SCC = x′ = 2x

The proof schema generate the following proof obligation:

x ∈ N ∧ true⇒ ((xtmp = x + 1 ∧ x′ = 2xtmp)⇒ (x′ = 2x + 2 ∧ x′ ∈ N))

SyncSeqAndVs
: This operator is a synchronized version of the SeqAnd operator

with a lock on a subset VS of Ve. Its proof schema is similar to the SeqAnd one,
but the projection onto internal variables Vi is replaced by a projection onto
Vi ∪ Vs.

Iter To prove the decomposition A ⇐ Iter(B, V), a variant V is needed.
It corresponds to the formalisation of the progress notion in the resolution of
the parent goal. Formally, a variant is a decreasing sequence defined on a well-
founded structure. A well-founded structure is an ordered set such that each
strictly decreasing sequence defined on this set has a lower bound. In the follow-
ing, we will denote the variant lower bound by V0. Thus proving that A⇐ IterB

is correct requires proving that:

– if V reaches its lower bound, then A is achieved:

I ∧ (CA ∨ CB) ∧ T (SCB) ⇒ (T (V) = V0 ⇒ T (SCA)) (4)

– CB is stable during the loop until A is achieved:

I ∧ (CA ∨ CB) ∧ T (SCB ∨GPFB) ∧ ¬T (SCA)⇒ T (CB) (5)

– the variant decreases: this may be proved whatever the success of B by
proving:

I ∧ (CA ∨ CB) ∧ ¬T (SCA) ⇒ (T (SCB ∨ GPFB) ⇒ T (V) < V) (6)

thanks to this last proof schema, the termination of A is guaranted, if B

succeeds one or more time, or even if B never succeeds.

External Goals The proof schema associated to external goals is quite dif-
ferent from the other ones. Let EGA be an external goal of an agent A associated
to an external property P and referencing a goal GB of another agent B.

The proof consists in showing that:

– GB is NS;
– achievement of GB entails achievement of EGA;
– when A waits for the achievement of EGA, B will eventually achieve GB.

The first item is a syntactic and trivial verification. The second one amounts
to proving:

IS ∧ IA ∧ IB ∧ CEGA

CGB
∧ P

}

⇒ ([v := v0]T (SCGB
)⇒ [v := v1]T (SCEGA

)) (7)



where substitutions [v := v0] and [v := v1], replacing non-primed variables with
free variables, allow to memorize the state of the system before the execution of
goals EGA and GB.

Finally, the third verification is divided into two steps: identifying the set of
goals SB whose contexts are consistent with CEGA

(and checking GB is in this
set) and then verifying for each trace corresponding to a behaviour of B that each
time a state of B corresponds to the achievement of a goal in SB then another
state in the future corresponds to the achievement of GB. The formalisation
of this part of the proof schema is not detailed in this paper because it would
require to expose the semantics of our operators in temporal logic, which is quite
too long to be exposed here.

4 Application

In [2], a scenario with two agents that must collaborate is described. An im-
plementation using Agentspeak and a verification based on model-checking are
proposed. This case study has not been chosen to prove the applicability of
our model to a real case, but to allow a comparison with another agent speci-
fication language and verification system. Using Bordini et al.’s description as
a specification, we designed GDT models for the two agents of this scenario.
In the following, some highlights of these GDTs and the associated proofs are
presented. Finally, a comparison with the work exposed in [2] is detailed.

4.1 The scenario

Agentspeak The Agentspeak(L) language has been designed by Rao [16]. The
goal of Agentspeak is to express the behaviour of BDI agents. An Agentspeak
agent has a base of goals, a base of beliefs and a set of plans. A plan, in Agents-
peak, is represented by a rule made of three parts: a triggering event (a goal
or belief insertion or deletion), a context, and a list of actions. Agentspeak(L)
allows to describe agents in a quite implementable way, but is not suitable to
perform proofs by theorem proving for many reasons. For instance, goals are
not described formally and most actions have to be implemented directly in the
target language (Java for instance).

The Robots on Mars (RoM) scenario The RoM scenario involves two
robots that must remove garbage on Mars. Mars is represented by a rectangu-
lar grid on which pieces of garbage are randomly distributed. Each robot has
different skills.

The first one, R1, moves on the grid to search for pieces of garbage. It can
grab them only one by one. When it finds one, it picks it up (in at most three
attempts), brings it to the position of R2, then drops it and finally goes back
to its previous location and resumes its search. The second robot, R2, cannot
move: it can only burn a piece of garbage situated in its cell. Of course, R1 does
not grab garbage that are on R2’s cell.

R1’s behaviour can be summarized as follows (corresponding plans in the
Agentspeak implementation are given):



1. it checks its position for a piece of garbage, if there is nothing, it goes to the
next slot (plan p1);

2. otherwise (plan p2 to p7):
(a) it tries to grab this garbage at most three times,
(b) it brings the garbage to R2 and drops it,
(c) it goes back and repeats (1).

For instance, plan p1 is the following:
+pos(R1,X1,Y1):checking(slots) & not(garbage(r1)) ← next(slot).

The behaviour of R2 is the following:

1. it waits for a piece of garbage to be in its cell,
2. it takes the new piece of garbage,
3. it burns it and repeats (1).

4.2 GDTs for the RoM scenario

Add-ons to the initial specification In [2], a few parts of the robots be-
haviour were unspecified or under-specified. So we had to make the following
choices:

Garbage distribution In Bordini et al.’s work, it is not specified whether
each cell of the grid can contain at most one or more pieces of garbage. We
decided that there is at most one piece of garbage in each cell.

Grabbing success The informal specification states that a piece of garbage
is grabbed by R1 in at most 3 attempts, but this is not explicit in the Agentspeak
model. We made it explicit in our GDT.

Grid exploration In [2], R1 explores the grid thanks to the next(slot)

action, which is not specified. We chose to provide R1 only with actions allowing
it to move one cell horizontally or vertically. This led us to specify its behaviour
when moving, included for avoiding R2’s cell (we chose to make it go through
the grid row by row, from top to bottom, from left to right on odd lines and
from right to left on even lines). Moreover, in [2], next(slot) seems to always
succeed, but the action performed when R1 reaches the end of the grid is not
specified. In the GDT presented here, R1 stops. We designed another GDT where
R1 goes back to the first cell, but it is not presented here.

Synchronisation between R1 and R2 Since we specified that a cell
cannot contain more than one piece of garbage, R1 cannot drop a new piece
of garbage on R2’s cell if R2 has not picked up the previous one yet. This
synchronisation is not specified in [2]. Moreover, R2 is satisfied (and so cannot
act before R1 has dropped a piece of garbage in its cell). So, there are two
synchronisations:

– R1 waits for R2 to pick up the piece of garbage.
– R2 waits for R1 to drop a piece of garbage,

The first one is specified by an external goal in the GDT of R1 whereas the
second one is specified thanks to the triggering context of the GDT of R2.



The environment The environment is described by a variable G. G(x, y) is
true if there is a piece of garbage in the cell at position (x, y) and false otherwise.
R2’s position, which is constant, is also described by two environment variables
xR2 and yR2, and so are the minimum and maximum coordinates of the grid
(variables xmin, xmax, ymin, ymax).

Robot R1 The goal of this robot is to clean the grid. To ensure it, it uses a
variable named clean, which is a set of cells. This set is initially empty, and a
cell can be added to it only by the action of picking a garbage or when it is
observed to be clean. R1’s main goal is MGR1 = (clean = grid), where grid is
the set of all cells on the grid except R2’s.

R1 also has variables x and y describing its position on the grid. Its other
variables are not presented here.

To design the failure possibility of the arm grabing the garbage, we used an
Iter operator where the subgoal describing the attempts is a NNS leaf one, so it
can fail. In the proof, we show that the parent goal is achieved after, at most,
three iterations.

Robot R2 The GDT of R2 is simpler than R1’s one. Its GDT correponds ex-
actly to the behaviour described in [2]. It just picks up the garbage and burns
it. So, its main goal is to be non busy and to have its cell clear: the satisfaction
condition of its main goal is SCMGR2 = (¬busyR2 ∧ ¬G(xR2, yR2)). The syn-
chronisation needed to ensure that R2 waits for a piece of garbage to burn is
not directly expressed in the structure of the GDT but thanks to its triggering
context TC(R2) = G(xR2, yR2). In fact, the GDT will be executed if and only
if there is a piece of garbage at the position of R2. Let us notice that since R2
must not be busy before each of its executions, the property ¬busyR2 is in the
PrecGDTR2 property.

4.3 Examples of proofs

We now present three detailed local proofs of nodes in R1’s GDT with, for each
one, an informal description and the subtree associated to the parent goal. The
full proof of the two GDTs can be found at [14].

SyncSeqAnd example We first consider the part of the GDT where R1 drops
a piece of garbage onto R2’s cell (Figure 1 (a), where the rectangle denotes an
external goal). R1 first waits for R2’s cell to be empty (external goal B, “Empty
cell”, detailed below), then drops the piece of garbage it holds (leaf goal C,
“Drop”). Variable G(x, y) is synchronized in order to ensure that once R1 has
observed the cell is empty, it stays so until R1 drops it garbage.

We have:














CA = (x, y) = (xR2 , yR2) ∧ busy

SCA = ¬busy′ ∧G′(x′, y′) ∧ (x′, y′) = (x, y)
SCB = ¬G(x, y) ∧ busy

SCC = ¬busy′ ∧G′(x′, y′)



C
Drop

L

A

SyncSeqAnd
G(x,y)

(a) (b)

L

A

Iter

Pick
BB

Empty Cell

Fig. 1. Subtrees of R1’s GDT

Moreover, the parent Goal A is NL and NS. So, to prove the decomposition of
A, according to the schema in Section 3 we have to prove:

I ∧ CA ⇒ [v′ := vtmp]T (SCBi,G(x,y)
) ∧ [v := vtmp]T (SCC)⇒ T (SCA)

That can be rewritten:

H ⇒ (¬busy′ ∧G′(x′, y′) ∧ (x′, y′) = (x, y))

Conjuncts ¬busy′ and G′(x′, y′) are entailed directly by [v = vtmp]T (SCC).
Now since variables x, y are internal and do not occur in SCB and SCC , we
have (x′, y′) = (x, y) and finally, T (SCA). Let Observe that synchronisation of
G(x, y) is not used in this proof; it is used only in the context propagation, for
ensuring that the context of C entails ¬G(x, y) as established by SCB.

Iter example We now consider the part of the GDT where R1 tries to pick up
the piece of garbage on the current cell until success (Figure 1 (b)). R1 iterates
over subgoal B, “Pick”, which consists in applying the named action pick (recall
that this action may fail, but succeeds after at most three attempts).

Since this subtree ends up with picking a piece of garbage, variable clean

(set of positions R1 has cleaned or observed to be clean) is involved. In order
to simplify the presentation, we however chose to remove it from the contexts
and satisfaction conditions here, as well as condition (x, y) 6= (xR2 , yR2), which
is stable in this subtree.

The variant used in the proof involves variable nbAttempts; this variable
counts the number of times R1 has already tried to pick up the piece of garbage.
Moreover, the Guaranteed Property upon Failure (GPF ) of an NNS goal is a
formula which is true when the goal fails.



We have:






























CA = G(x, y) ∧ ¬busy ∧ nbAttempts = 0
CB = G(x, y) ∧ ¬busy ∧ nbAttempts < 3
SCB = ¬G′(x′, y′) ∧ busy′

GPFB =







G′(x′, y′) ∧ busy′ = busy

∧ nbAttempts′ = nbAttempts + 1
∧ nbAttempts < 3

Moreover, the parent node is lazy and NS, and its satisfaction condition is SCA =
¬G′(x′, y′) ∧ busy′ = SCB.

Let V = (3−nbAttempts) be the variant and let its lower bound be V0 = 0. V
is well-defined because the invariant I of R1 entails nbAttempts ≤ 3. According
to the schema in Section 3, we have to prove:

I ∧ (CA ∨ CB)
¬SCA

}

⇒







T (SCB)⇒ T (V) = V0 ⇒ T (SCA) (1)
¬T (SCA)⇒ (T (SCB) ∨ T (GPFB))⇒ T (V) < V (2)
¬T (SCA)⇒ (T (SCB) ∨ T (GPFB))⇒ T (CB) (3)

Entailment (1) is obvious since T (SCB) = T (SCA).
Entailment (2) holds when T (SCB) is true because in that case, ¬T (SCA)

is false (as SCA=SCB). It also holds with T (GPFB) because T (GPFB) entails
that nbAttempts′ = nbAttempts + 1, which in turn entails T (V) < V (as V =
3− nbAttempts and T (V) = 3− nbAttempts′).

Entailment (3) holds when T (SCB) for the same reason as entailment (2).
Finally, it also holds with T (GPFB) because T (GPFB) together with either CA

or CB clearly entails T (CB).

External goal example We finally consider the external node B on Fig-
ure 1 (a) in the GDT where R1 waits for R2’s cell to be empty, in order to
be allowed to drop the piece of garbage it holds onto it. Since R1 cannot empty
this cell itself, it must wait for R2 to do it.

The goal of R2 achieving R1’s desire is its main goal MGR2. This goal is
decomposed into two subgoals using a SyncSeqAnd operator, namely goal “Pick”
and goal “Burn”. R2 has an internal variable busyR2 which is true if R2 currently
holds a piece of garbage and false otherwise.

As a consequence, we have:







CB = (x, y) = (xR2 , yR2) ∧ busy

SCMGR2 = ¬busyR2 ∧ ¬G(xR2 , yR2)
SCB = ¬G(x, y) ∧ busy

According to the proof schema in Section 3, we first have to check that R2’s
goal MGR2 is NS, which is the case.

Now we have to check that the achievement of MGR2 entails the achievement
of R1’s goal B by applying proof schema 7, that can be here approximatively
simplified in CB ∧ T (SCMGR2)⇒ T (SCB). Again, this is true since:



– busy′ in T (SCB) is entailed by busy in CB together with the fact that busy

being an internal variable of R1, busy′ = busy,

– ¬G′(x′, y′) in T (SCB) is entailed by ¬G′(xR2 , yR2) in T (SCMGR2) together
with (x, y) = (xR2 , yR2) in CB and the fact that x, y are internal variables
of R1 and xR2 , yR2 are constants.

Finally, we have to check that every state of R2 which is compatible with
CB finally ends up with the achievement of MGR2. When R1 waits for B to be
satisfied, as B is lazy, we have:

CB ∧ ¬SCB

that is to say:

(x, y) = (xR2, yR2) ∧ busy ∧ ¬(¬G(x, y) ∧ busy)

that can be rewritten:

(x, y) = (xR2, yR2) ∧ busy ∧ (G(x, y) ∨ ¬busy)

that can be simplified:

(x, y) = (xR2, yR2) ∧ busy ∧G(xR2, yR2) (8)

As a consequence, the context of the Burn node of R2 entails ¬G(xR2, yR2),
which is not compatible with equation 8. So the set of compatibles goals of R2
with B is {Pick, MGR2}. If R2 is executing goal MGR2, this goal is NS, and so
will be achieved, implying that SCB will be true. If R2 is executing goal Pick,
as this goal is NS and is followed (thanks to a SeqAnd operator) by another NS
goal (Burn), the parent goal (which is MGR2) will also be satisfied and so will
be B.

Finally, we have to considered what happens if R2’s GDT execution is ended.
Recall that the triggering context of R2 defined in section 4.2 is TC(R2) =
G(xR2, yR2). this is obviously entailed by equation 8 above. And so, R2, will
reach the execution of its main goal, which satisfies goal B.

4.4 Comparison with Bordini et al.’s work

Goal decomposition The body of an Agentspeak plan is “a sequence of basic
actions or (sub)goals that the agent has to achieve (or test) when the plan is
triggered”. There are two kinds of such subgoals: the first kind must be achieved
by other plans whereas the second one consists in beliefs additions or deletions.
In a GDT, the first kind is specified by a goal decomposition and the second one
corresponds to variable modifications inside leaf goals. So, there is a similarity
between our goal decompositions and Agentspeak plans. However, as shown in
the next section, the verification of behaviours is completely different.



Verification and proof Verification in AgentSpeak is based on model-checking
which takes place after the implementation step with JPF2. In [2], it has been
made on an instance of this scenario where the size of the grid is 5x5 and with
only 2 pieces of garbage. On the contrary, our proof is performed only once for
all instances of this scenario without any constraint on the number of pieces of
garbage, on the size of the grid and on the position of R2. Of course, when work-
ing with first-order logic, theorem proving is not decidable, leading some true
properties unproved whereas model-checking can be automatically performed
with a computable complexity. However, to obtain the same level of proof as
ours on the RoM problem, it would be necessary to test an infinite number of
situations, because the grid can be of any size.

Another interesting aspect of our proof process is that it helped us to find
some problems in our first designs of GDTs before their implementation. Indeed,
proof failures give local clues to solve inconsistencies or to highlight lacks in the
specification. In that case, the compositional aspect of our proof process implies
that required modifications of GDTs do not make the whole proof fail but only
parts associated to goals involved in this modification. For instance, the presence
of ¬busyR2 in PrecGDTR2 was not specified in a first version, generating a proof
failure when R2 had to pick up a piece of garbage (he might have already been
busy). Modifying this property also implied to modify the init clause of R2 to
avoid a new proof failure.

Finally, model-checking performed on the RoM scenario can only be done
on a complete implementation. For instance, an implementation of next(slot)
must be provided in order to verify properties presented in [2]. Thanks to the
compositional property of our proof process, the proof of the correctness of the
behaviour of R1 can be made in two steps. In a first step, the correctness of the
behaviour of R1 can be obtained under the assumption that next cell, the goal
corresponding to the next(slot) basic action, provides a behaviour ensuring that
R1 moves to a never visited cell different from R2’s. To do this, next cell was
specified by a goal with only a satisfaction condition but no subtree. In a second
step, we have specified the next cell goal by a subtree. The proof process has
then allowed to prove the correctness of the subtree with respect to the next cell

satisfaction condition.

Expressiveness and conciseness Since satisfaction conditions used in a GDT
are based on sets theory, arithmetics and temporal logic, they are at least as
expressive as Agentspeak and they allow to completely specify behaviours of
BDI agents, the base of beliefs being represented by the set of the variables
of the agent. For instance, we did not find any lack of expressiveness when we
applied the model to the RoM scenario.

Another interesting comparison deals with the conciseness of Agentspeak and
GDT. At first glance, Agentspeak seems quite more concise: the Agentspeak
model for robot R1 is made of 9 plans whereas the GDT of R1 contains 30
nodes. However, the Agentspeak model uses unspecified actions (drop, grab,
nextslot, etc.) that we fully specified in our GDT (since we wanted an automatic
translation to an implementation). If these implementation details are removed



from the GDT, its size becomes equal to 13 nodes with at most 2 subgoals each,
which is comparable to the number of plans in the Agentspeak model, where
each plan has up to 3 subgoals.

Finally, we wish to emphasize that our model allows to take into account
the semantics of the actions, thanks to preconditions and postconditions. Every
modification of a variable corresponding to an actuator which is used in the
agent’s goal can only be done through named actions.

5 Related Works

The GDT model of an agent behaviour and the associated proof system are
differently connected to several different kinds of works. First of all, there are
links with formal agent models like MetateM [9], Desire [4] or Gäıa [22]. These
works are focused on agent models on which it is possible to reason which is
necessary for analysis and especially for proof problems. A part of these formal
models like [21, 8, 20] are focused on a declarative description of goals, which is
exactly our point of view. A detailed comparison of these approaches with the
GDT model can be found in [19]. There are also links between our proposal and
agent programming languages like AgentSpeak [16], 3APL [7], ConGolog [10].
These languages allow to specify agents behaviours which can be directly exe-
cuted which is one of the goals of the GDT model. However, 3APL does not
allow to prove the specified behaviour and ConGolog is dedicated to situation
calculus. Our approach can also be compared to goal oriented MAS development
methods like Prometheus [12], MaSe [6], KAOS or Tropos. Indeed, our proposal
is also intended to provide a complete MAS design process from the specification
to the implementation. Moreover our approach takes place in the framework of
“formal transformation systems” as defined in [6]. A detailed comparison of these
works with the GDT model can be found in [19]. Last but not least, our proposal
can be directly compared to SMA verification methods. Two subtypes can be
distinguished: theorem proving based (like in PROSOCS) and model checking.

PROSOCS [3] agents are agents whose behaviour is described by goal decom-
position rules à la Prolog. Rules are parameterised by time variables allowing
to perform proofs about the evolution of the system state. Many characteris-
tics of PROSOCS agents are very interesting for performing proofs, and a proof
procedure has been implemented in Prolog. However, the system is limited to
propositional logic formulas. The Goal [8] method also has a proof model, but
is limited to propositional logic too.

Model checking is a verification method consisting in testing all the situations
which may be encountered by the system. Two kinds of model checking can be
distinguished: bounded model-checking [2] and unbounded-model checking [1, 15,
11]. However, with the two types of model-checking, proofs can only be performed
on finite models or on models that can be considered as finite ones.

6 Conclusion

We have demonstrated the GDT model on an already studied example, and
shown that it is as interesting as Agentspeak in terms of expressiveness and



conciseness, but also allows to prove behaviours (as opposed to model checking
or no verification at all).

Arguably, GDT are graphically rather complex to manipulate. This is why
we have created an application, called GdtEditor, which allows to edit GDTs
and all related information (satisfaction conditions, variables, actions. . . ), and
to export them in various formats. The application also automatically generates
the implementation model (in Java), as is allowed by the model. This application
is available at [17]. Current work aims at integrating it a theorem prover. Once
the substitutions applied, our proof schemas generate proof obligations similar
to those of the B method. As a consequence, using a prover of this method like
krt [5] should be straightforward. Preliminary tests confirm this. An automatic
connexion with this prover should be presented in a future article. A small per-
centage of the proofs of true properties may fail, but krt provides an interactive
mode that allows to help the prover in these proofs.

Current work on the method aims at generalizing the model of external goals
in order to allow specification and proof of more interactions, in particular when
several other agents are needed to achieve an external goal. We are also working
on parameterizing GDTs together with their proofs, so as to be able to factorize
similar subtrees or more generally to reuse behaviours.

References

1. N. Alechina, B. Logan, and M. Whitsey. A complete and decidable logic for
resource-bounded agents. In Autonomous Agents and Multi-Agent Systems (AA-
MAS’04), 2004.

2. R.H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable multi-agent
programs. In M. Dastani, J. Dix, and A. Seghrouchni, editors, ProMAS, 2003.

3. A. Bracciali, U. Endriss, N. Demetriou, T. Kakas, W. Lu, and K. Stathis. Crafting
the mind of prosocs agents. Best of ’From Agent Theory to Agent Implementation
4’, Applied Artificial Intelligence, to appear, 2004.

4. F.M.T. Brazier, P.A.T. van Eck, and J. Treur. Simulating Social Phenomena, vol-
ume 456, chapter Modelling a Society of Simple Agents : from Conceptual Speci-
fication to Experimentation, pages pp 103–109. Lecture NOtes in Economics and
Mathematical Systems, 1997.

5. Clear-Sy. B for free. http://www.b4free.com/public/resources.php.
6. Scott A. Deloach Clint H. Sparkman and Athie L. Self. Automated derivation

of complex agent architectures from analysis specifications. In Proceedings of
AOSE’01, 2001.

7. M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent delib-
eration: An approach illustrated using the 3apl language. In Proceedings of the
Second International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS’03), 2003.

8. F.S. de Boer, K.V. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. Agent pro-
gramming with declarative goals. In 7th International Workshop on Intelligent
Agents. Agent Theories Architectures and Language, pages 228–243, 2000.

9. M. Fisher. A survey of concurrent METATEM – the language and its applications.
In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic - Proceedings of



the First Intemational Conference (LNAI Volume 827), pages 480–505. Springer-
Verlag: Heidelberg, Germany, 1994.

10. Giuseppe De Giacomo, Yves Lesperance, and Hector J. Levesque. Congolog, a
concurrent programming language based on the situation calculus. Artificial In-
telligence, 121(1-2):109–169, 2000.

11. M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent systems
via unbounded model checking. In Autonomous Agents and Multi-Agent Systems
(AAMAS’04), 2004.

12. J. Khallouf and M. Winikoff. Towards goal-oriented design of agent systems. In
Proceedings of ISEAT’05, 2005.

13. B. Mermet, D. Fournier, and G. Simon. An agent compositional proof system. In
From Agent Theory to Agent Implementation (AT2AI’06), 2006.

14. B. Mermet, G. Simon, A. Saval, and B. Zanuttini. GDTs and Proofs
for Robots on Mars. Technical report, GREYC, 2006. http://scott.univ-
lehavre.fr/˜mermet/GDT/applications/proofRoM.pdf.

15. F. Raimondi and A. Lomuscio. Verification of multiagent systems via orderd binary
decision diagrams: an algorithm and its implementation. In Autonomous Agents
and Multi-Agent Systems (AAMAS’04), 2004.

16. A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable lan-
guage. In W. Van de Velde and J. Perram, editors, MAAMAW’96, volume 1038,
Eindhoven, The Netherlands, 1996. LNAI.

17. A. Saval. Robots on mars: implementation, 2006.
http://arnaud.saval.free.fr/backup/applet/page.html.

18. G. Simon and M. Flouret. Implementing validated agents behaviours with au-
tomata base on goal decomposition trees. In Agent Oriented Software Engineering
VI, volume 3950 of LNCS, pages 124–138. Springer Verlag, 2006.

19. G. Simon, B. Mermet, and D. Fournier. Goal decomposition tree: An agent model
to generate a validated agent behaviour. In Andrea Omicini Paolo Torroni Mat-
teo Baldoni, Ulle Endriss, editor, Declarative Agent Languages and Technologies
III: Third International Workshop, DALT 2005, volume 3904 of LNCS, pages 124–
140. Springer Verlag, 2006.

20. M.B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J.Ch. Meyer. Dynamics of
declarative goals in agent programming. In Proceedings of Declarative Agent Lan-
guages and Technologies (DALT’04), 2004.

21. M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative & procedu-
ral goals in intelligent agent systems. In 8th International Conference on Principles
of Knowledge Representation and Reasoning (KR2002), 2003.

22. M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(3):285–312, 2000.


