
Agent Design with Goal Decomposition Trees:

Companion Paper.

Bruno Mermet Gaële Simon Bruno Zanuttini ∗

July 15, 2009

1 Introduction and organization

This report is a companion for the article Agent Design with Goal Decomposition
Trees [MSZ08]. We give here the detailed proofs that the verification step is
valid, that is, that our proof schemas and propagation rules (contexts and GPFs)
are correct.

Here we only recall the definitions and assumptions useful for proofs, in
Section 2; Other definitions can be found in [MSZ08]. Section 2 also gives some
useful lemmas. Then we proceed with each type of node successively. Leaf nodes
are studied in Section 3, and the various operators in Sections 4–5. Finally, we
study the case of lazy nodes in Section 6.

For each type of node, we recall the associated operational semantics, proof
schemas, propagation rules for contexts (from the node to its children in the
GDT), and propagation rules for GPFs (from the children to the node). We
prove that if the obligations are verified, then executing the node terminates,
and results in either the satisfaction condition or the GPF being true. We then
prove that the propagation rule for contexts is correct. Since Section 6 contains
every schema and proof related to lazy nodes, in all other sections we assume
that the nodes are nonlazy.

2 Preliminaries

We first recall the following definitions from [MSZ08].

Definition 1 (NS/NNS, actions) An action a is said to be necessarily sat-
isfiable (NS) if for all worlds ωa (resp. αa) at which an agent ends (resp.
starts) executing a, (αa, ω′

a) satisfies T ′(posta). For such an action a, we as-
sume gpf a =⊥.

∗GREYC, UMR CNRS 6072, Boulevard du Maréchal Juin, F-14032 Caen Cedex,

France. E-mail addresses: bruno.mermet@univ-lehavre.fr, gsimon@iut.univ-lehavre.fr,

bruno.zanuttini@info.unicaen.fr

1

Otherwise, a is said to be nonnecessarily satisfiable (NNS). In this case, for
all worlds αa, ωa as above, either a succeeds, and (αa, ω′

a) satisfies T ′(posta), or
a fails and (αa, ω′

a) satisfies T ′(gpf a).

Definition 2 (agent) Let E be an environment. An agent A (in E) is a tuple:

(Vi(A), VE (A), initA, iA, SA,ActionsA, BehA)

where Vi(A) is a set of variables with Vi(A) ∩ VE = ∅, VE(A) ⊆ VE , initA

is a mapping from Vi(A) to values, iA ∈ LVi(A), SA ⊆ LVi(A) (and is finite),
and ActionsA is a set of actions whose preconditions, postconditions, and GPFs
concern only variables in VE(A)∪Vi(A). and BehA is the behaviour of the agent.
It is assumed that the interpretation of Vi(A) as defined by initA satisfies iA.

Definition 3 (leaf node) Let E be an environment, and let A be an agent. A
leaf node N (of a GDT for A in E) is a 6-tuple:

(nameN , aN , scN , gpf N , lzN ,nsatN)

where aN ∈ ActionsA, scN , gpf N ∈ L′

VE (A)∪Vi(A), lzN ∈ {L,NL}, and nsatN ∈

{NS ,NNS}. Moreover, if lzN = L, then we must have scN ∈ L and if nsatN =
NS, then gpf N =⊥.

Definition 4 (internal node) Let A be an agent in an environment E. An
internal node N (of a GDT for A in E) is a 7-tuple:

(nameN ,OpN ,ChildrenN , scN , gpf N , lzN ,nsatN)

where scN , gpf N , lzN ,nsatN are as in Definition 3, OpN is a decomposition
operator, and ChildrenN is a sequence of internal and leaf nodes whose length
matches the arity of OpN .

Definition 5 (LTL atoms) Let N be a node in the GDT of an agent A, and
let ω be an instant in the lifetime of A. Then ω |= initN (resp. ω |= endN) if
and only if A starts (resp. ends) executing N at instant ω, and ω |= inN if and
only if A starts, finishes, or is currently executing N .

Now if ω |= inN , write αN for the latest world before or equal to ω and
satisfying initN . Then ω |= scN if and only if the couple of interpretations
(αN , ω′) satisfies scN ; if ω 6|= inN , the value of scN at it is not defined. Finally,
ω |= satN if and only if ω |= endN ∧ scN , and ω |= nonsatN if and only if
ω |= endN ∧ ¬scN .

Definition 6 (well-formed GDT) A GDT is said to be well-formed if each
of its nodes N satisfies the rules in Table 1, where N1, N2, . . . , Nn denote the
children of N if it is an internal node.

Definition 7 (αN (ω)) Let N be a node, and let ω be a world satisfying inN .
Then αN (ω) is defined to be the latest (i.e., maximal wrt ≺) world ωb such that
ωb � ω and ωb |= initN .

2

All nodes

For 1 ≤ i < j ≤ n, 2(¬inNi
∨ ¬inNj

) (G.1)
For 1 ≤ i ≤ n, 2(inNi

→ inN) (G.2)
2(¬initN ∨ ¬endN) (G.3)
2((inN ∧ ¬endN) → ◦¬initN) (G.4)

Leaf nodes 2(initN → ◦endN) (G.5)

L nodes
2(initN → ◦(scN → endN)) (G.6)

2(initN → ◦(¬scN → initNL
N)) (G.7)

Table 1: Operational semantics for GDTs (Definition 6)

We now recall the following, fundamental assumption concerning the values
of internal variables, and give two useful corollaries. In summary, the assump-
tion states that internal variables of an agent change value only as the result
of some action of this agent. The corollaries state that this cannot happen, in
particular, right after the execution of some node terminates or right after the
execution of some lazy node starts.

Assumption 8 (frame axiom) Let A be an agent, and let ϕ ∈ LVi(A). If ω

is a world such that ω satisfies ϕ and ◦ω does not satisfy ϕ, then this is the
result of A beginning an action a at world ω (and finishing it at world ◦ω) so
that ω |= prea and either ◦ω |= posta |= ¬ϕ or ◦ω |= gpf a |= ¬ϕ.

Corollary 9 (frame axiom after the end of nodes) Let N be a node in
the GDT of Agent A. Then for all formulae ϕ such that V (ϕ) ⊆ Vi(A) and
for all worlds ω satisfying endN , if ω satisfies ϕ, then so does ◦ω.

Proof Towards a contradiction, assume ω |= ϕ and ◦ω 6|= ϕ. Then by As-
sumption 8 some action a must start at world ω. From the semantics of GDTs
it follows that ω satisfies initNL

N for some leaf node NNL with aNL
N = a and

lzNL
N = NL, or •ω satisfies initL

N for some leaf node NL with aL
N = a, lzL

N = L,
and such that ω 6|= scL

N (Rule (G.7)).
In the first (nonlazy) case, we have that ω satisfies endN and initNL

N . From
Rule (G.3) we get N 6= NNL. Moreover, since NNL is a leaf node, we get
that it is a descendant of N in T . Finally, from Rules (G.3) and (G.5) we get
ω |= endNL

N . Thus the execution of N terminates (strictly) before that of its
descendant NNL, in contradiction with the fact that signals end · go bottom up,
and signals init · go top down in GDTs (Rule (G.2)).

In the lazy case, we have that ω satisfies endN and (initL
N)NL (Rule (G.7)),

and we conclude as before. 2

Corollary 10 (frame axiom for L nodes) Let N be a lazy node in the GDT
of Agent A. Let αN be a world satisfying initN and ◦¬scN . Then for all
formulae ϕ such that V (ϕ) ⊆ Vi(A), if αN satisfies ϕ, then so does ◦αN .

Proof The reasoning is similar to that in the proof of Corollary 9. Indeed,
if αN violates the claim, then some action a begins at this time, which can

3

only come as the result of a leaf node being executed at αN (nonlazy leaf) or
right before (lazy leaf), in both cases violating the fact that no signal is sent on
initiating execution of a lazy node (Rules (G.6) and (G.7)). 2

3 Leaf nodes

The operational semantics for leaf nodes only states that initN → ◦endN is
always true (Rule (G.5)), which amounts to say that the duration of the asso-
ciated action defines the duration of the leaf. In particular, since actions are
supposed to terminate, we do not need to prove termination for leaf nodes.

Now the proof obligations are the following:

iE ∧ iA ∧ cN |= prea (1)

iE ∧ iA ∧ cN ∧ T ′(posta) |= T ′(scN) (2)

iE ∧ iA ∧ cN ∧ T ′(gpf a) |= T ′(gpf N) (3)

Proposition 11 (NL leaf nodes) Let N be an NL leaf node, and let a be
the associated action. Then if obligations 1 and 2 (resp. 1 and 3) are proven,
execution of N succeeds (resp. fails) when a succeeds (resp. fails).

Proof Let ωN be a world satisfying endN , and let αN = αN (ωN). We have
to prove that (αN , ω′

N) satisfies T ′(scN) (resp. T ′(gpf N)) if a succeeds (resp.
fails).

Obviously, αN satisfies iE , iA, and cN . Thus Obligation 1 shows that it
satisfies prea. It follows from Definition 1 that (αN , ω′

N) satisfies T ′(posta)
when a succeeds (resp. T ′(gpf a) when a fails), and the conclusion follows from
Obligation 2 (resp. 3). 2

As explained in [MSZ08], leaf nodes also come with the following obligations,
which are enough to show that invariants and stable properties are correctly
preserved in the whole GDT:

Helem |= At ′(iE) (4)

Helem |= At ′(iA) (5)

Helem ∧ sE |= At ′(sE) (6)

Helem ∧ sA |= At ′(sA) (7)

with Helem = iE ∧ iA ∧ cN ∧ (T ′(posta) ∨ T ′(gpf a)).

Proposition 12 (environment) Let N be a leaf node in the GDT of an agent
A, and assume that the obligation generated from Schema (4) is proven. Then
for all worlds αN such that αN |= initN , if αN satisfies iE , then so does ◦αN .
Similarly, for all stable properties sE ∈ SE , if the obligation generated from
Schema (6) is proven, then for all worlds αN such that αN |= initN , if αN

satisfies sE , then so does ◦αN .

4

SeqAnd

2(satN1
→ ◦initN2

) (SA.1)
2(nonsatN1

→ ◦endN) (SA.2)
2(satN2

→ (endN ∧ satN)) (SA.3)
2(nonsatN2

→ ◦endN) (SA.4)
NL 2(initN → initN1

) (SA.5)

Table 2: Operational semantics for SeqAnd (Definition 14)

Proof Obvious. 2

Proposition 13 (agent) Assume that for all elementary goals N in the GDT
of an agent A the obligation generated from Schema (5) is proven. Then for
all worlds ω in the trace of A, ω satisfies iA. Similarly, for all stable properties
sA ∈ SA, if the obligation generated from Schema (7) is proven for all nodes in
the GDT of A, then for all worlds ω in its trace, if ω satisfies sA, then so does
◦ω.

Proof Obvious from the fact that the invariant and stable properties of an
agent only concern its internal variables (Definition 2) and Assumption 8. 2

4 SeqAnd

Definition 14 (SeqAnd) SeqAnd is the binary decomposition operator de-
fined by the rules in Table 2, where N denotes the parent node with ChildrenN =
(N1, N2).

The proof obligations for SeqAnd are the following:

iE ∧ ΣE ∧ iA ∧ ΣA ∧ cN ∧ (T tmp(scN1
))ri ∧ T ′

tmp(scN2
) |= T ′(scN) (8)

with ΣE =
∧

sE∈SE
(sE → At ′(sE)) and ΣA =

∧
sA∈SA

(sA → At ′(sA)).

Proposition 15 (SeqAnd NL, termination) Let N be a node with OpN =
SeqAnd, ChildrenN = (N1, N2), and lzN = NL. Then an execution of N

terminates as soon as the corresponding executions of N1 and N2 do.

Proof Let αN be a world satisfying initN . We have to show that αN satisfies
⋄endN .

From Rule (SA.5), we have αN |= initN1
. Since N1 terminates, there is a

world ωN1
such that ωN1

� αN and ωN1
|= endN1

. Then if ωN1
|= nonsatN1

,
from Rule (SA.2) we get that it satisfies ◦endN , which concludes. Otherwise
we have ωN1

|= satN1
(given the definition of atoms, see Definition 5), and from

Rule (SA.1) we get that ωN1
satisfies ◦initN2

; as above we get a world ωN2
� αN

and satisfying endN2
. If it satisfies satN2

, then it satisfies endN by Rule (SA.3),
and otherwise it satisfies ◦endN by Rule (SA.4), which concludes in both cases.
2

5

Proposition 16 (SeqAnd NL, correctness) Let N be a node with OpN =
SeqAnd, ChildrenN = (N1, N2), and lzN = NL. Assume that proof obliga-
tion (8) is verified for N . Then an execution of N succeeds as soon as the
corresponding executions of N1 and N2 terminate and succeed.

Proof Let ωN be a world satisfying endN , and αN be the latest world before
ωN and satisfying initN . We have to show that (αN , ω′

N) satisfies T ′(scN).
We have αN |= initN1

by Rule (SA.5). Let ωN1
be the earliest world after αN

satisfying endN1
, which exists since N1 terminates. Since N1 succeeds, we have

that (αN , ω′
N1

) satisfies T ′(scN1
), and ωN1

|= satN1
. Now let αN2

be ◦ωN1
. By

Rule (SA.1), we have αN2
|= initN2

. Like for N1, there is an earliest world ωN2

after αN2
which satisfies endN2

and satN2
. Thus (αN2

, ω′
N2

) satisfies T ′(scN2
).

Now it follows from the tree semantics of GDTs (Definition 6) that ωN2
is

exactly ωN . Finally, summing up and translating world ωN1
to the intermediate

instant, we have:

(αN , ω
tmp
N1

) |= T tmp(scN1
) (9)

(αtmp
N2

, ω′
N2

) |= T ′
tmp(scN2

) (10)

Now from (9) we get the stronger (αN , ω
tmp
N1

) |= (T tmp(scN1
))ri. From the

frame axiom (Corollary 9) and from the fact that αN2
is defined to be ◦ωN1

,
we conclude (αN , α

tmp
N2

) |= (T tmp(scN1
))ri. Finally, (αN , α

tmp
N2

, ω′
N2

) satisfies
(T tmp(scN1

))ri ∧ T ′
tmp(scN2

). Now by definition, αN satisfies iE , iA and cN ,

(αN , ω′
N2

) satisfies
∧

sE∈SE
(sE → At ′(sE)) and

∧
sA∈SA

(sA → At ′(sA)) , and
consequently, from the proof obligation, the above triple satisfies T ′(scN). Since
this latter formula does not contain any variable of the form vtmp, we finally
have (αN , ω′

N2
) |= T ′(scN), as desired since ωN = ωN2

. 2

Proposition 17 (SeqAnd NL, GPF) Let N be a node with OpN = SeqAnd,
ChildrenN = (N1, N2), and lzN = NL. Then:

gpf N |= (T ′(gpf N1
))ri ∨ ((T tmp(scN1

))ri ∧ (T ′
tmp(gpf N2

))ri)ℓr

Proof Let ωN be a world satisfying nonsatN . From the circumscription as-
sumption about LTL atoms and the definition of nonsatN , we have that ωN

satisfies endN and thus, that •ωN satisfies nonsatN1
(Rule (SA.2)) or nonsatN2

(Rule (SA.4)).
In the first case, by Definition (αN1

, •ω′
N) satisfies T ′(gpf N1

). Moreover,
from the tree semantics and hef act that only Rule (SA.5) can send Signal
initN1

, we have that αN1
is exactly αN (ωN). Thus (αN (ωN), (•ωN)′) satis-

fies T ′(gpf N1
), and from Corollary 9 we conclude that (αN (ωN), ω′

N) satisfies
(T ′(gpf N1

))ri, as desired.
In the second case, it is easily shown that the corresponding execution of

N1 has succeeded and that of N2 has failed. We thus have (αN2
, (•ωN)′) |=

T ′(gpf N2
) and (αN1

, ω′
N1

) |= T ′(scN1
), and the second disjunct in the statement

follows as above. 2

6

Iter
2(endN1

→ ◦(¬scN → initN1
)) (I.1)

2(endN1
→ ◦(scN → satN)) (I.2)

NL 2(initN → initN1
) (I.3)

Table 3: Operational semantics for Iter (Definition 20)

Proposition 18 (SeqAnd NL, context) Let T be a GDT, and let N be a
node in T with OpN = SeqAnd, ChildrenN = (N1, N2), and lzN = NL. Then
cN1

|= cN and cN2
|= ((T ′(scN1

))ri)r.

Proof We first consider cN1
. Let αN1

be a world satisfying initN1
. From the

tree semantics of GDTs (Definition 6) we have that the only father of N1 in
T is N , and from the circumscription assumption about LTL atoms recalled in
Section 2 it follows that only Rule (SA.5) can justify Signal initN1

being sent
at αN1

. Thus αN1
satisfies initN , and thus it satisfies cN , as desired.

We now turn to cN2
. The only rule able to send Signal initN2

is Rule (SA.1),
from what it follows that •αN2

satisfies satN1
. Then from the Definitions of

satN1
and scN1

(Definition 5) we get that (αN1
, (•αN2

)′) satisfies T ′(scN1
),

where αN1
is the corresponding starting instant for N1. Projecting onto internal

variables on the right and using Corollary 9 we get that (αN1
, α′

N2
) satisfies

(T ′(scN1
))ri and finally, projecting onto the right we get that αN2

satisfies
((T ′(scN1

))ri)r. 2

5 Iter

Definition 19 (variant) Let N be a node with OpN = Iter in the GDT of an
agent A. Then a variant for N is a tuple (v, <v, v0), where v ∈ Vi(A) and <v

is a total order on the values taken by v, such that every decreasing sequence of
these values is lower-bounded by the value v0.

Definition 20 (Iter) Iter is the unary decomposition operator defined by the
rules in Table 3, where N denotes the parent node and N1 denotes the child
node.

The proof obligations for Iter are the following:

HNL = iE ∧
∧

sE∈SE

(sE → At ′(sE)) ∧ iA ∧
∧

sA∈SA

(sA → At ′(sA)) ∧ cN

H1 = (T ′(scN1
))ri ∨ (T ′(gpf N1

))ri

H2 = T tmp(¬scN) ∧ ((T ′
tmp(scN1

))ri ∨ (T ′
tmp(gpf N1

))ri)

HNL ∧ (H1 ∨ H2) ∧ (v′ = v0) |= T ′(scN) (11)

HNL ∧ H1 ∧ (v′ 6= v0) |= v′ <v v (12)

HNL ∧ H2 ∧ (v′ 6= v0) |= v′ <v vtmp (13)

7

Proposition 21 (Iter NL, termination) Let N be a node with OpN = Iter,
ChildrenN = (N1), and lzN = NL. Assume that proof obligations 11 to 13 are
verified for N . Then an execution of N terminates as soon as the corresponding
executions of N1 do.

Proof Let αN be a world satisfying initN . From Rule (I.3) we have αN |=
initN1

. Let (ωN1
)1 be the earliest world after αN and satisfying endN1

, which
exists since N1 terminates.

We distinguish two cases. First assume the value of v at (ωN1
)1 is v0. Write

ωN for ◦ω1
N1

. Using Corollary 9 and the fact that v consists of internal variables
only (Definition 19), we have ωN |= (v = v0). Moreover, depending on whether
N1 has succeeded or failed, (αN , (ω1

N1
)′) satisfies T ′(scN1

) or T ′(gpf N1
), and

by Corollary 9 again, (αN , ω′
N) satisfies (T ′(scN1

))ri or (T ′(gpf N1
))ri, that is,

(αN , ω′
N) satisfies hypothesis H1. Finally, by definition of contexts and invari-

ants, αN satisfies cN as well as iE and iA, and by definition of stable properties,
(αN , ω′

N) satisfies
∧

sE∈SE
(sE → At ′(sE)) and

∧
sA∈SA

(sA → At ′(sA)) . It
follows that (αN , ω′

N) satisfies the hypotheses of Obligation 11 (with disjunct
H1), and thus it satisfies T ′(scN). Since ω1

N1
|= endN1

and ωN = ◦ω1
N1

, we get
from Rule (I.2) that ωN satisfies satN and thus endN , as desired.

Now assume the value of v at ω1
N1

is different from v0. Then as above, from
Obligation 12 it follows that it is less than its value at αN . If ω1

N1
satisfies ◦scN ,

then we conclude using Rule (I.2). Otherwise, let α1
N1

be ◦ω1
N1

. By Rule (I.1)
this world satisfies initN1

. Moreover, by construction (αN , (α1
N1

)tmp) satisfies
T tmp(¬scN), and from Corollary 9 and the fact that v is over internal variables
only, the value of v at α1

N1
equals its value at ω1

N1
.

Thus, in case the execution of N does not end after the first iteration, by
induction we get worlds ω1

N1
, α1

N1
, ω2

N1
, α2

N1
, . . . such that for all i = 2, 3, . . .:

(αN , (αi−1
N1

)tmp) |= T tmp(¬scN)

((αi−1
N1

)tmp, (ωi
N1

)′) |= (T ′
tmp(scN1

))ri ∨ (T ′
tmp(gpf N1

))ri

Thus from Obligation 13 we get that the value of v at ωi
N1

decreases with

increasing i. It follows that for some i0, ωi0
N1

satisfies v = v0, and from the
construction it thus satisfies:

(αN , (αi0−1
N1

)tmp) |= T tmp(¬scN)

((αi0−1
N)tmp, (ωi0

N1
)′) |= (T ′

tmp(scN1
))ri ∨ (T ′

tmp(gpf N1
))ri

(ωi0
N1

)′ |= v′ = v0

Now by Corollary 9 we get that ◦ωi0
N1

satisfies exactly the same hypotheses,
that is, it satisfies the hypotheses of Obligation 11 (with disjunct H2), and thus
(αN , (◦ωi

N1
)′) satisfies T ′(scN). We conclude with Rule (I.2). 2

Proposition 22 (Iter NL, correctness) Let N be a node with OpN = Iter,
ChildrenN = (N1), and lzN = NL. Assume that proof obligations 11 to 13 are
verified for N . Then an execution of N succeeds as soon as the corresponding
executions of N1 terminate.

8

Proof Obvious since by Proposition 21 the execution of N must end, but by
Definition of Iter the signal nonsatN cannot be sent. 2

Proposition 23 (Iter NL, GPF) Let N be a node with OpN = Iter. Then
gpf N |=⊥.

Proof Direct from the fact that N always succeeds (Proposition 22) and the
definition of GPFs. 2

Proposition 24 (Iter NL, context) Let T be a GDT, and let N be a node
in T with OpN = Iter, ChildrenN = (N1), and lzN = NL. Then cN1

|=
cN ∨ (¬T ′(scN))r.

Proof From the circumscription assumption about LTL atoms and the rules
defining Iter it follows that any world αN1

satisfying initN1
either satisfies initN

or is such that •αN1
|= endN1

and αN1
|= ¬satN , hence the result. 2

6 Lazy nodes

As explained in [MSZ08], the proofs schemas and propagation rules for a lazy
node N can be derived from the ones for its nonlazy counterpart NNL. Also re-
call that the operational semantics of lazy node is given by 2(initN → ◦(scN →
endN)) (Rule (G.6)) and 2(initN → ◦(¬scN → initNL

N)) (Rule (G.7)).

Proposition 25 (lazy nodes, proof schemas) Let N be a lazy node, and let
NNL be the same node except for lzNNL = NL. Define cNL

N to be ¬scN ∧ (cN)i.
Then if all proof obligations generated for NNL with this context, and the ad-
ditional obligation (T ′(gpf N))ℓi |= T ′(gpf N), are proven, N terminates and
succeeds (resp. establishes its GPF) when its satisfaction condition is initially
true or the corresponding execution of NNL terminates and succeeds (resp. es-
tablishes it GPF).

Proof Let ωN be a world satisfying endN , and αN = αωN
(N). First, if αN

satisfies ◦scN , then by Rule (G.6) we get ωN = ◦αN , and by the same rule
together with the definition of LTL atom scN we have ωN |= scN . Hence the
execution of N terminates (immediately) and succeeds.

Now assume that αN does not satisfy ◦scN . Then by Rule (G.7) we get
◦αN |= initNL

N . Moreover, by definition of contexts we have that αN |= cN , thus
a fortiori αN |= (cN)i and by Corollary 10 we get ◦αN |= (cN)i. Write ωNL

N for
the first world after (or equal to) ◦αN and satisfying endNL

N . This world exists
since the execution of NNL is assumed to terminate. Then by the operational
semantics of laziness we have ωNL

N = ωN .
First assume that the execution of NNL succeeds. Then from the definition of

proof obligations and the assumption we have that (◦αN , ω′
N) satisfies T ′(scNL

N).
But since satisfaction conditions of lazy nodes are in L (Definition 4), this is
equivalent to ωN |= scNL

N = scN , hence N succeeds.

9

Finally, assume that the execution of NNL establishes its GPF. Then we
have that (◦αN , ω′

N) satisfies T ′(gpf NL
N) = T ′(gpf N). From Corollary 10 it

follows that (αN , ω′
N) satisfies (T ′(gpf N))ℓi and thus, by assumption it satisfies

T ′(gpf N), as desired. 2

Proposition 26 (lazy nodes, context) Let N be a lazy node, and let NNL

be the same node except for lzNNL = NL. Define cNL
N to be ¬scN ∧ (cN)i. Then

for all nodes Ni ∈ ChildrenN , cNi
entails cNL

Ni
, where cNL

Ni
is the context of Ni

as computed from NNL using cNL
N .

Proof From the tree semantics of GDTs and Rule (G.7) we first get that
if ω |= initNi

for some world ω, then this corresponds to an execution of N

starting at αN with αN 6|= ◦scN . Using the same reasoning as in the proof of
Proposition 25 we get that the decomposition of N gets executed as if N were
nonlazy, but with context ¬scN ∧ (cN)i, hence the result. 2

To conclude, as concerns preservation of invariant and stable properties by
leaf nodes, the proof schemas are the same as those given in Section 3, but with
hypotheses Helem = iE ∧ iA ∧ ¬scN ∧ (cN)i ∧ (T ′(posta) ∨ T ′(gpf a)). The proof
that these schemas are correct is straightforward.

References

[MSZ08] Bruno Mermet, Gaële Simon, and Bruno Zanuttini. Agent Design with
Goal Decomposition Trees. Technical report, GREYC-UMR 6072,
2008.

SeqOr

2(¬inN1
∨ ¬inN2

) (SO.1)
2((inN1

∨ inN2
) → inN) (SO.2)

2((endN1
∧ satN1

) → (endN ∧ satN)) (SO.3)
2((endN1

∧ ¬satN1
) → ◦initN2

) (SO.4)
2((endN2

∧ satN2
) → (endN ∧ satN)) (SO.5)

2((endN2
∧ ¬satN2

) → ◦endN) (SO.6)
NL 2(initN → initN1

) (SO.7)
L 2(initN → ¬inN1

∧ ¬inN2
∧ ◦(¬satN → initN1

)) (SO.8)

10

Case(.,.)

2(¬inN1
∨ ¬inN2

) (C.1)
2((inN1

∨ inN2
) → inN) (C.2)

2(condN1
∨ condN2

) (C.3)
2((endN1

∧ satN1
) → (endN ∧ satN)) (C.4)

2((endN1
∧ ¬satN1

) → ◦endN) (C.5)
2((endN2

∧ satN2
) → (endN ∧ satN)) (C.6)

2((endN2
∧ ¬satN2

) → ◦endN) (C.7)

NL
2(initN → ◦(initN1

∨ initN2
)) (C.8)

2(initN → ◦(¬condN1
→ initN2

)) (C.9)
2(initN → ◦(¬condN2

→ initN1
)) (C.10)

L
2(initN → ¬inN1

∧ ¬inN2
∧ ◦(¬satN → ◦(initN1

∨ initN2
))) (C.11)

2(initN → ◦(¬satN → ◦(¬condN1
→ initN2

))) (C.12)
2(initN → ◦(¬satN → ◦(¬condN2

→ initN1
))) (C.13)

And

2(¬inN1
∨ ¬inN2

) (A.1)
2((inN1

∨ inN2
) → inN) (A.2)

2(initN → ¬secondN) (A.3)
2((secondN ∧ inN) → ◦secondN) (A.4)
2((¬secondN ∧ ¬endN1

∧ ¬endN2
) → ◦¬secondN) (A.5)

2((endN1
∧ secondN ∧ satN1

) → (endN ∧ satN)) (A.6)
2((endN1

∧ ¬secondN ∧ satN1
) → ◦(initN2

∧ secondN)) (A.7)
2((endN1

∧ ¬satN1
) → ◦endN) (A.8)

2((endN2
∧ secondN ∧ satN2

) → (endN ∧ satN)) (A.9)
2((endN2

∧ ¬secondN ∧ satN2
) → ◦(initN1

∧ secondN)) (A.10)
2((endN2

∧ ¬satN2
) → ◦endN) (A.11)

NL 2(initN → (initN1
∨ initN2

)) (A.12)
L 2(initN → ¬inN1

∧ ¬inN2
∧ ◦(¬satN → (initN1

∨ initN2
))) (A.13)

11

