Agent Design with Goal Decomposition Trees:
Companion Paper.

Bruno Mermet Gaéle Simon Bruno Zanuttini *

July 15, 2009

1 Introduction and organization

This report is a companion for the article Agent Design with Goal Decomposition
Trees [MSZ08]. We give here the detailed proofs that the verification step is
valid, that is, that our proof schemas and propagation rules (contexts and GPFs)
are correct.

Here we only recall the definitions and assumptions useful for proofs, in
Section 2; Other definitions can be found in [MSZ08]. Section 2 also gives some
useful lemmas. Then we proceed with each type of node successively. Leaf nodes
are studied in Section 3, and the various operators in Sections 4-5. Finally, we
study the case of lazy nodes in Section 6.

For each type of node, we recall the associated operational semantics, proof
schemas, propagation rules for contexts (from the node to its children in the
GDT), and propagation rules for GPFs (from the children to the node). We
prove that if the obligations are verified, then executing the node terminates,
and results in either the satisfaction condition or the GPF being true. We then
prove that the propagation rule for contexts is correct. Since Section 6 contains
every schema and proof related to lazy nodes, in all other sections we assume
that the nodes are nonlazy.

2 Preliminaries

We first recall the following definitions from [MSZ08|.

Definition 1 (NS/NNS, actions) An action a is said to be necessarily sat-
isfiable (NS) if for all worlds w, (resp. «g) at which an agent ends (resp.
starts) executing a, (aq,w)) satisfies T'(post,). For such an action a, we as-
sume gpf, =1.

*GREYC, UMR CNRS 6072, Boulevard du Maréchal Juin, F-14032 Caen Cedex,
France. E-mail addresses: bruno.mermet@univ-lehavre.fr, gsimon@iut.univ-lehavre.fr,
bruno.zanuttiniQinfo.unicaen.fr

Otherwise, a is said to be nonnecessarily satisfiable (NNS). In this case, for
all worlds aq,w, as above, either a succeeds, and (aq,wl) satisfies T'(post,), or
a fails and (aq,w)) satisfies T'(gpf ,)-

Definition 2 (agent) Let £ be an environment. An agent A (in &) is a tuple:
(Vi(A),Ve(A),init 4,44, Sa, Actionss,Behy)

where V;(A) is a set of variables with V;(A) N Vg = 0, Vg(A) C Vg, inita
is a mapping from V;(A) to values, ia € Ly,(a), Sa C Ly,a) (and is finite),
and Actions 4 is a set of actions whose preconditions, postconditions, and GPFs
concern only variables in Ve(A)UV;(A). and Behy is the behaviour of the agent.
It is assumed that the interpretation of V;(A) as defined by init 4 satisfies ia.

Definition 3 (leaf node) Let £ be an environment, and let A be an agent. A
leaf node N (of a GDT for A in £) is a 6-tuple:

(namen, an, scn, gpf i, lzn, nsat)

where an € Actionsa, scn, gpf n € ElVg(A)UVi(A)’ lzy € {L, NL}, and nsaty €
{NS, NNS}. Moreover, if Iz = L, then we must have scy € L and if nsaty =
NS, then gpfy =L.

Definition 4 (internal node) Let A be an agent in an environment €. An
internal node N (of a GDT for A in £) is a T-tuple:

(namen, Opy, Childreny, scn, gof n, 12N, nsaty)

where scy, gof i, lZn, nsaty are as in Definition 3, Opy is a decomposition
operator, and Children is a sequence of internal and leaf nodes whose length
matches the arity of Opy .

Definition 5 (LTL atoms) Let N be a node in the GDT of an agent A, and
let w be an instant in the lifetime of A. Then w = initn (resp. w = endy) if
and only if A starts (resp. ends) executing N at instant w, and w = iny if and
only if A starts, finishes, or is currently executing N .

Now if w | iny, write an for the latest world before or equal to w and
satisfying inity. Then w = scy if and only if the couple of interpretations
(an,w’) satisfies scn; if w = iny, the value of scy at it is not defined. Finally,
w E saty if and only if w |E endy A scn, and w = nonsaty if and only if
w = endy A -sen.

Definition 6 (well-formed GDT) A GDT is said to be well-formed if each
of its nodes N satisfies the rules in Table 1, where Ny, Na, ..., N, denote the
children of N if it is an internal node.

Definition 7 (ay(w)) Let N be a node, and let w be a world satisfying iny .
Then an(w) is defined to be the latest (i.e., maximal wrt <) world wy such that
wp S w and wp = inity.

For 1 <i < j <n,0(xiny, V -iny;) | (G.1)
For 1 <i<mn,0(inn, — inn) (G.2)
All nodes O(—inity V —endn) (G.3)
O((inny A —endy) — o—init) (G.4)
Leaf nodes || O(inity — cendy) (G.5)
O(inity — o(sey — endy)) (G.6)

L
nodes |l 5ty — o(=scy — inith)) (G.7)

Table 1: Operational semantics for GDTs (Definition 6)

We now recall the following, fundamental assumption concerning the values
of internal variables, and give two useful corollaries. In summary, the assump-
tion states that internal variables of an agent change value only as the result
of some action of this agent. The corollaries state that this cannot happen, in
particular, right after the execution of some node terminates or right after the
execution of some lazy node starts.

Assumption 8 (frame axiom) Let A be an agent, and let ¢ € Ly, a). If w
is a world such that w satisfies ¢ and ow does not satisfy , then this is the
result of A beginning an action a at world w (and finishing it at world ow) so

that w = pre, and either ow |= post, = —¢ or ow = gpf, E —p.

Corollary 9 (frame axiom after the end of nodes) Let N be a node in
the GDT of Agent A. Then for all formulae ¢ such that V() C V;(A4) and
for all worlds w satisfying endy, if w satisfies o, then so does ow.

Proof Towards a contradiction, assume w = ¢ and ow = ¢. Then by As-
sumption 8 some action a must start at world w. From the semantics of GDTs
it follows that w satisfies inity" for some leaf node NV¥ with ai* = a and
1zNF = NL, or ew satisfies init% for some leaf node N* with ak =a, Ik =L,
and such that w [~ sck (Rule (G.7)).

In the first (nonlazy) case, we have that w satisfies end y and indit Y. From
Rule (G.3) we get N # NN, Moreover, since NV is a leaf node, we get
that it is a descendant of N in T'. Finally, from Rules (G.3) and (G.5) we get
w = endN*. Thus the execution of N terminates (strictly) before that of its
descendant NV%, in contradiction with the fact that signals end. go bottom up,
and signals init. go top down in GDTs (Rule (G.2)).

In the lazy case, we have that w satisfies endy and (init%)" (Rule (G.7)),
and we conclude as before. a

Corollary 10 (frame axiom for L nodes) Let N be a lazy node in the GDT
of Agent A. Let an be a world satisfying inity and o—scy. Then for all
formulae ¢ such that V(¢) C Vi(A), if an satisfies p, then so does oay .

Proof The reasoning is similar to that in the proof of Corollary 9. Indeed,
if ay violates the claim, then some action a begins at this time, which can

only come as the result of a leaf node being executed at ay (nonlazy leaf) or
right before (lazy leaf), in both cases violating the fact that no signal is sent on
initiating execution of a lazy node (Rules (G.6) and (G.7)). O

3 Leaf nodes

The operational semantics for leaf nodes only states that inity — ocendy is

always true (Rule (G.5)), which amounts to say that the duration of the asso-

ciated action defines the duration of the leaf. In particular, since actions are

supposed to terminate, we do not need to prove termination for leaf nodes.
Now the proof obligations are the following:

ig NiaNeny | pre, (1)
ie Nia Aen AT (post,) | T'(scn) (2)
is NiaNen NT'(gpf) B T'(9pf n) (3)

Proposition 11 (NL leaf nodes) Let N be an NL leaf node, and let a be
the associated action. Then if obligations 1 and 2 (resp. 1 and 8) are proven,
execution of N succeeds (resp. fails) when a succeeds (resp. fails).

Proof Let wy be a world satisfying endy, and let ay = any(wy). We have
to prove that (an,w’y) satisfies T'(scy) (resp. T"(gpfn)) if a succeeds (resp.
fails).

Obviously, ay satisfies ig, i4, and c¢y. Thus Obligation 1 shows that it
satisfies pre,. It follows from Definition 1 that (an,wf) satisfies T'(post,)
when a succeeds (resp. T'(gpf,) when a fails), and the conclusion follows from
Obligation 2 (resp. 3). O

As explained in [MSZ08], leaf nodes also come with the following obligations,
which are enough to show that invariants and stable properties are correctly
preserved in the whole GDT:

Huem FE At'(ig) (4)
Heem [At'(ia) (5)
Hejem N Sg ': At/(Sg) (6)
Hejem N Sa ': At/(SA) (7)

with Hepem = ig Aia Aen A (T (post,) VT (gpf ,))-

Proposition 12 (environment) Let N be a leaf node in the GDT of an agent
A, and assume that the obligation generated from Schema (4) is proven. Then
for all worlds an such that ayn | inity, if an satisfies ig, then so does oap.
Similarly, for all stable properties sg € Sg, if the obligation generated from
Schema (6) is proven, then for all worlds an such that ay | inity, if ay
satisfies sg, then so does oay.

O(satn, — oinity,) (SA.1)
O(nonsaty, — oendn) (SA.2)
SeqAnd O(satn, — (endn A satn)) | (SA.3)
O(nonsaty, — oendy) (SA4)
NL D(im'tN — initNl) (SA.5)

Table 2: Operational semantics for SeqgAnd (Definition 14)

Proof Obvious. O

Proposition 13 (agent) Assume that for all elementary goals N in the GDT
of an agent A the obligation generated from Schema (5) is proven. Then for
all worlds w in the trace of A, w satisfies i4. Similarly, for all stable properties
sa € S84, if the obligation generated from Schema (7) is proven for all nodes in
the GDT of A, then for all worlds w in its trace, if w satisfies s 4, then so does
ow.

Proof Obvious from the fact that the invariant and stable properties of an
agent only concern its internal variables (Definition 2) and Assumption 8. O

4 SeqAnd

Definition 14 (SeqAnd) SeqAnd is the binary decomposition operator de-
fined by the rules in Table 2, where N denotes the parent node with Childrenn =
(N1, Na).

The proof obligations for SeqAnd are the following:
e N2g NiaANXaANeN A (Ttmp(sch))M N TtImp(SCN2)): TI(SCN) (8)

with Yg = /\ Sg — At/(Sg)) and Y4 = /\ sS4 — At/(SA)).

85655(SAESA(

Proposition 15 (SeqAnd NL, termination) Let N be a node with Opy =
SeqAnd, Childreny = (N1,Na), and lzy = NL. Then an execution of N
terminates as soon as the corresponding executions of N1 and Na do.

Proof Let ay be a world satisfying init y. We have to show that ay satisfies
cendpy.

From Rule (SA.5), we have an |= inity,. Since N terminates, there is a
world wy, such that wy, = an and wy, = endy,. Then if wy, = nonsaty,,
from Rule (SA.2) we get that it satisfies oendn, which concludes. Otherwise
we have wy, = saty, (given the definition of atoms, see Definition 5), and from
Rule (SA.1) we get that wy, satisfies oinit n,; as above we get a world wy, = ay
and satisfying end y,. If it satisfies saty,, then it satisfies endy by Rule (SA.3),
and otherwise it satisfies ocendy by Rule (SA.4), which concludes in both cases.
O

Proposition 16 (SeqAnd NL, correctness) Let N be a node with Opy =
SeqAnd, Childreny = (N1,N2), and lzy = NL. Assume that proof obliga-
tion (8) is verified for N. Then an execution of N succeeds as soon as the
corresponding executions of N1 and Na terminate and succeed.

Proof Let wy be a world satisfying end, and ay be the latest world before
wy and satisfying init y. We have to show that (an,w) satisfies T (scn).

We have ay = initn, by Rule (SA.5). Let wy, be the earliest world after oy
satisfying endy,, which exists since N; terminates. Since N7 succeeds, we have
that (an,wy,) satisfies T'(scn,), and wy, = saty,. Now let ay, be own,. By
Rule (SA.1), we have ay, | inity,. Like for Ny, there is an earliest world wy,
after ay, which satisfies endy, and satn,. Thus (an,,wy,) satisfies T(scy,).

Now it follows from the tree semantics of GDTs (Definition 6) that wy, is
exactly wy. Finally, summing up and translating world wy, to the intermediate
instant, we have:

(an, i) T (sen,) (9)
(an," wh,) o Timp(sen,) (10)

Now from (9) we get the stronger (aN,w%Tp) E (TP (scn,))ri- From the
frame axiom (Corollary 9) and from the fact that ay, is defined to be owy,,
we conclude (an,ay.?) = (TP (sc,))ri. Finally, (an, oy, wh,) satisfies
(T (scn,))ri A Thyp(scn,). Now by definition, an satisfies ig, ia and cy,
(an,wh,) satisfies A\, _cg.(se = At'(sg)) and A, cg,(sa — At'(sa)) , and
consequently, from the proof obligation, the above triple satisfies T'(scy). Since
this latter formula does not contain any variable of the form v'*P, we finally

have (an,wy,) F T'(scn), as desired since wy = wy,- |

Proposition 17 (SeqAnd NL, GPF) Let N be a node with Op = SeqAnd,
Childreny = (N1, N3), and lzxy = NL. Then:

iy F (Tl(gprl))ri \ ((Ttmp(SCNl))ri A (Ttlmp(gprQ))ri)ér

Proof Let wy be a world satisfying nonsaty. From the circumscription as-
sumption about LTL atoms and the definition of nonsaty, we have that wy
satisfies endy and thus, that ewy satisfies nonsaty, (Rule (SA.2)) or nonsat n,
(Rule (SA.4)).

In the first case, by Definition (ay,,ewly) satisfies T"(gpf n,). Moreover,
from the tree semantics and hef act that only Rule (SA.5) can send Signal
initn,, we have that ay, is exactly ay(wy). Thus (an(wn), (ewy)') satis-
fies T'(gpf n,), and from Corollary 9 we conclude that (an(wn),wy) satisfies
(T"(gpf n,))ri> as desired.

In the second case, it is easily shown that the corresponding execution of
N; has succeeded and that of Ny has failed. We thus have (an,, (ewn)’) =
T'(gpf n,) and (an,,wy,) = T'(scn,), and the second disjunct in the statement
follows as above. a

Tter O(endn, — o(—sen — inity,)) | (1.1)
O(endy, — o(scy — saty)) (1.2)
NL O(inity — nity,) (1.3)

Table 3: Operational semantics for Iter (Definition 20)

Proposition 18 (SeqAnd NL, context) Let T be a GDT, and let N be a
node in T with Opy = SeqAnd, Childreny = (N1, N2), and lzy = NL. Then
cn, Fen and ey, = ((T7(s¢ny))ri)r-

Proof We first consider cy,. Let ay, be a world satisfying inity,. From the
tree semantics of GDTs (Definition 6) we have that the only father of Nj in
T is N, and from the circumscription assumption about LTL atoms recalled in
Section 2 it follows that only Rule (SA.5) can justify Signal inity, being sent
at apn,. Thus ay, satisfies inity, and thus it satisfies ¢y, as desired.

We now turn to cn,. The only rule able to send Signal initn, is Rule (SA.1),
from what it follows that eay, satisfies saty,. Then from the Definitions of
satn, and scy, (Definition 5) we get that (an,,(ean,)’) satisfies T'(scny),
where o, is the corresponding starting instant for NV;. Projecting onto internal
variables on the right and using Corollary 9 we get that (aNl,aﬁ\b) satisfies
(T"(scny))ri and finally, projecting onto the right we get that ay, satisfies
(T (se i) 0

5 Iter

Definition 19 (variant) Let N be a node with Opy = Iter in the GDT of an
agent A. Then a variant for N is a tuple (v, <y, Vo), where v € V;(A) and <,
s a total order on the values taken by v, such that every decreasing sequence of
these wvalues is lower-bounded by the value vg.

Definition 20 (Iter) Iter is the unary decomposition operator defined by the
rules in Table 3, where N denotes the parent node and Ny denotes the child
node.

The proof obligations for Iter are the following:

Hy, = ig A\ (se = At'(se)) Nian [\ (sa — At'(sa)) A
sg€Se sAE€ESA
Hi = (T'(seny))ri V(T (gpf n,))ri
Hy = T"(=sen) ATy (sen,))ri V (T (90f 5,))ri)
Hyp AN(HiVH)AN (W =v9) | T'(sen) (11)
Hyp ANHI AW #v9) B vV <y (12)
Hyp NHa A (V' #vo) BV <, 0™ (13)

Proposition 21 (Iter NL, termination) Let N be a node with Opy = Iter,
Childreny = (N1), and lzy = NL. Assume that proof obligations 11 to 13 are
verified for N. Then an execution of N terminates as soon as the corresponding
executions of N1 do.

Proof Let ay be a world satisfying initn. From Rule (I.3) we have an =
initn,. Let (wn,)! be the earliest world after ay and satisfying endy,, which
exists since N7 terminates.

We distinguish two cases. First assume the value of v at (wp,)! is vo. Write
wpy for szlvl- Using Corollary 9 and the fact that v consists of internal variables
only (Definition 19), we have wy |= (v = vg). Moreover, depending on whether
N1 has succeeded or failed, (an, (wy,)") satisfies T"(scn,) or T"(gpf y,), and
by Corollary 9 again, (an,wly) satisfies (1"(scn,))ri or (T"(gpf n,))ri> that is,
(an,why) satisfies hypothesis Hy. Finally, by definition of contexts and invari-
ants, a satisfies ¢y as well as i¢ and 74, and by definition of stable properties,
(an,why) satisfies A\, cg.(se — At'(se)) and A, cg,(sa — At'(sa)) . Tt
follows that (an,w)y) satisfies the hypotheses of Obligation 11 (with disjunct
H,), and thus it satisfies T’(scn). Since w]lvl E endy, and wy = ow}vl, we get
from Rule (I.2) that wy satisfies saty and thus endy, as desired.

Now assume the value of v at wy;, is different from vg. Then as above, from
Obligation 12 it follows that it is less than its value at ay. If Wzlvl satisfies oscyy,
then we conclude using Rule (I.2). Otherwise, let oy, be owy, . By Rule (L1)
this world satisfies init y,. Moreover, by construction (an, (ay,)"?) satisfies
TP (=scy), and from Corollary 9 and the fact that v is over internal variables
only, the value of v at a}vl equals its value at Wzlvl-

Thus, in case the execution of N does not end after the first iteration, by
induction we get worlds wj, ,al, ,w¥, ,a%,,. .. such that for all i = 2,3,..

(OéN,(Oéﬁv_l)tmp) F Ttmp(—'SCN)
(@)™ (wiv,)) E (Thp(sen))ri V (T (90F 5,))ri

Thus from Obligation 13 we get that the value of v at w}vl decreases with

increasing ¢. It follows that for some i, w}'\‘}l satisfies v = vy, and from the
construction it thus satisfies:

(an, (al}{)zl_l)tmp) E TP (=scy)
(™)™ (ww)) E (Thp(sen)ri V (Tinp (99f 3,))ri
(wy,) E v'=w
Now by Corollary 9 we get that owﬁ{}l satisfies exactly the same hypotheses,

that is, it satisfies the hypotheses of Obligation 11 (with disjunct Hs), and thus
(an, (owly,)’) satisfies T"(scn). We conclude with Rule (L.2). O

Proposition 22 (Iter NL, correctness) Let N be a node with Opy = Iter,
Childreny = (N1), and lzy = NL. Assume that proof obligations 11 to 13 are
verified for N. Then an execution of N succeeds as soon as the corresponding
executions of Ny terminate.

Proof Obvious since by Proposition 21 the execution of N must end, but by
Definition of Iter the signal nonsaty cannot be sent. O

Proposition 23 (Iter NL, GPF) Let N be a node with Opy = Iter. Then
gpfn FL.

Proof Direct from the fact that N always succeeds (Proposition 22) and the
definition of GPFs. a

Proposition 24 (Iter NL, context) Let T be a GDT, and let N be a node
in T with Opy = Iter, Childreny = (N1), and lzny = NL. Then cn, E
en V(2T (sen))r-

Proof From the circumscription assumption about LTL atoms and the rules
defining I'ter it follows that any world ay, satisfying init v, either satisfies inity
or is such that eay, | endy, and ay, | —saty, hence the result. O

6 Lazy nodes

As explained in [MSZ08], the proofs schemas and propagation rules for a lazy
node N can be derived from the ones for its nonlazy counterpart N¥%. Also re-
call that the operational semantics of lazy node is given by O(init y — o(scy —
endy)) (Rule (G.6)) and O(inity — o(—scy — initN)) (Rule (G.7)).

Proposition 25 (lazy nodes, proof schemas) Let N be a lazy node, and let
NN be the same node except for lzyve = NL. Define C%L to be =sen A (en);-
Then if all proof obligations generated for NNV with this context, and the ad-
ditional obligation (T'(gpfn))ei E T'(gpf), are proven, N terminates and
succeeds (resp. establishes its GPF) when its satisfaction condition is initially
true or the corresponding execution of NN* terminates and succeeds (resp. es-
tablishes it GPF).

Proof Let wy be a world satisfying endy, and any = ayy (N). First, if ay
satisfies oscy, then by Rule (G.6) we get wy = oay, and by the same rule
together with the definition of LTL atom scy we have wy = scy. Hence the
execution of N terminates (immediately) and succeeds.

Now assume that axn does not satisfy oscy. Then by Rule (G.7) we get
oay = inithE. Moreover, by definition of contexts we have that ay = ¢y, thus
a fortiori ay | (cn)i and by Corollary 10 we get oan = (cy)i. Write wiL for
the first world after (or equal to) oan and satisfying end%L . This world exists
since the execution of N is assumed to terminate. Then by the operational
semantics of laziness we have wﬁ,’L = wp.

First assume that the execution of N¥L succeeds. Then from the definition of
proof obligations and the assumption we have that (cay,w’;) satisfies T"(scNE).
But since satisfaction conditions of lazy nodes are in £ (Definition 4), this is

equivalent to wy | st]\\;L = scy, hence N succeeds.

Finally, assume that the execution of N establishes its GPF. Then we
have that (oan,wly) satisfies T"(gpfN*) = T’(gpfn). From Corollary 10 it
follows that (an,wly) satisfies (T7(gpf n))e: and thus, by assumption it satisfies
T (gpf n), as desired. O

Proposition 26 (lazy nodes, context) Let N be a lazy node, and let NNE
be the same node except for lzyne = NL. Deﬁne c L to be —scn A(en)i- Then
for all nodes N; € Childreny, cN entails c L where c L is the context of N;
as computed from NN using &

Proof From the tree semantics of GDTs and Rule (G.7) we first get that
if w = inity, for some world w, then this corresponds to an execution of N
starting at ay with ay £ oscy. Using the same reasoning as in the proof of
Proposition 25 we get that the decomposition of N gets executed as if N were
nonlazy, but with context —scy A (cn)i, hence the result. O

To conclude, as concerns preservation of invariant and stable properties by
leaf nodes, the proof schemas are the same as those given in Section 3, but with
hypotheses Hejem = ig Aia A—sen A (en)i A (T (post,) VT (gpf,)). The proof
that these schemas are correct is straightforward.

References

[MSZ08] Bruno Mermet, Gagle Simon, and Bruno Zanuttini. Agent Design with
Goal Decomposition Trees. Technical report, GREYC-UMR 6072,

2008.
O(—inn, V —iny,) (50.1)
O((inn, Vinn,) — inN) (50.2)
SeqOr O((endn, A satn,) — (endn A saty)) (50.3)
O((endn, A —satn,) — oinity,) (50.4)
O((endn, A satn,) — (endn A saty)) (50.5)
O((endn, A —satn,) — oendn) (50.6)
NL O(inity — inity,) (50.7)
L O(inity — —iny, A Diny, A o(nsaty — inity,)) | (SO.8)

10

O(—inn, V Diny,) (C.1)
O((inn, Vinn,) — inN) (C.2)
O(condy, V condn,) (C.3)
Case(.,.) O((endn, A satn,) — (endn A satn)) (C4)
O((endn, A —satn,) — cendn) (C.5)
O((endn, A satn,) — (endn A saty)) (C.6)
O((endn, A —satn,) — oendn) (C.7)
O(inity — o(inity, V initn,)) (C.8)
NL O(inity — o(—condn, — inity,)) (C.9)
O(inity — o(—condn, — inity,)) (C.10)
O(inity — —inn, A Diny, A o(—saty — o(initn, V inity,))) | (C.11)
L O(inity — o(—saty — o(—condn, — nity,))) (C.12)
O(inity — o(—saty — o(—condn, — nity,))) (C.13)
O(—inn, V Diny,) (A.1)
O((inn, Vinn,) — inN) (A.2)
O(inity — —second) (A.3)
O((secondy A iny) — osecondy) (A4)
And O((—secondy A —endpn, A —endy,) — omsecond) (A.5)
O((endn, A secondy A saty,) — (endn A saty)) (A.6)
O((endn, A —secondn A satn,) — o(initn, A secondn)) (A7)
O((endn, A —satn,) — oendn) (A.8)
O((endn, A secondy A saty,) — (endn A satn)) (A.9)
O((endn, A —secondn A saty,) — o(initn, A secondy)) (A.10)
O((endn, A —satn,) — cendy) (A.11)
NL O(inity — (indtn, V inity,)) (A.12)
L O(inity — —iny, A Diny, A o(nsaty — (initn, V inity,))) | (A.13)

11

