
Technical report

Agent Design with Goal Decomposition Trees

Bruno Mermet · Gaële Simon · Bruno
Zanuttini

07/10/08

Abstract We present a formal model for specifying agents, called Goal De-
composition Trees (GDT). This model allows to specify the behaviour of the
agent with operators and logical conditions for combining actions. Proof obli-
gations, essentially in the logic used for the design, can be generated so as to
formally prove that the behaviour of the agent is correct. Finally, automata im-
plementing this behaviour can be automatically generated. Thus our method
encompasses the whole design, from specification to implementation, with the
ability to prove that the design and implementation are correct. This is made
possible by providing GDTs, proof obligations and automata with a common
semantics formulated in linear temporal logic.

We describe the whole model, from the specification to the implementa-
tion phase, and show the validity of automatic transformations and of proof
schemas using the formal operational semantics. We also describe two exten-
sions of the model, namely one to external goals, that is, goals which are meant
to be executed by another agent in a multi-agent setting, and one to param-
eterized goals, which can serve as verified subGDTs which can be reused in
various contexts.

Keywords Goal Decomposition Tree · Agent · Agent design · Formal method

1 Introduction

We present a global approach to specify and implement multiagent systems
(MASs), which allows to perform a formal verification of each design step. We

Corresponding author: Bruno.Mermet@univ-lehavre.fr

GREYC, CNRS, Université de Caen Basse-Normandie, ENSICAEN.
Boulevard du Maréchal Juin, F-14032 Caen Cedex, France.
bruno.mermet@univ-lehavre.fr, gsimon@iut.univ-lehavre.fr,
bruno.zanuttini@info.unicaen.fr

2

propose to specify the behaviour of each agent by a Goal Decomposition Tree
(GDT).

A GDT is the specification of how the main goal of an agent is to be
achieved, by a tree-structured combination of actions through operators (like
sequence, choice, iteration. . .) and through logical conditions (allowing in par-
ticular to specifying goals and conditional branchings). This specification is
very intuitive, since it uses the logic chosen for describing the environment
and essentially graphical combinations of operators. The environment may be
dynamic, which is modelled by descriptors which can change value indepen-
dently from the agent, and nondeterministic, which is modelled in particular
by actions which may fail.

From a GDT, proof obligations can be generated in essentially the same
logic as that used for the design. If these obligations are verified, then the
approach guarantees that the GDT indeed achieves its goal. This proof process
is compositional, that is, proof obligations are generated independently for
each part of the GDT, so that modifying a node in the tree does not require to
verify the whole tree again. A theorem prover for the chosen logic is intended
to perform the task of verifying the obligations, but this can be done by any
means. Obviously and unavoidably, the more expressive the logic, the less easy
automatic proofs.

Finally, from a GDT, a behaviour automaton can be generated, which
provably executes the behaviour specified by the tree. In particular, if the
proof obligations have been verified, then the automaton is guaranteed to
achieve the specified goals. The automaton can be generated in, or translated
to, any programing language of interest.

Our approach can be considered as a CASE tool1. Nevertheless, the model
is such that the design and the proof process are as independent as possible.
For instance, one can use a GDT for specifying the behaviour of an agent,
thus using the intuitiveness of the model, and generate an automaton which
(provably) executes the specified behaviour. This automaton can then be used
for verifying the behaviour by, e.g., model checking, thus bypassing the veri-
fication of obligations. This may be of interest if, e.g., a convenient theorem
prover is not available, or if some obligations turn out to be undecidable.

An important aspect of our approach is that the whole process is formally
proven to be correct. To that aim, we attach an operational semantics to
GDTs. This semantics is expressed in a logic built on top of linear temporal
logic (LTL), and describes how a GDT is executed; it can be intended as a
formal definition of a GDT and of operators. We use this semantics for prov-
ing that the obligations generated from a GDT are sufficient for establishing
its correctness, and for proving that the automatically generated behaviour
automata execute the behaviour specified by the GDT. Nevertheless, this val-
idation of our approach is completely transparent to the designer of a MAS
who uses our model.

1 Computer Aided Software Engineering

3

By associating a formal operational semantics to GDTs, we also propose
a formal specification of the behaviour of agents evolving in a dynamic en-
vironment. For instance, our semantics takes into account elements such as
continual evolution of environment variables, delays during the execution of
the different goals of an agent which lead to uncertainty on the current state of
the environment, the possible failure of an action or of a plan, and side effects
due to the evolution of the environment or to other agents, which can lead
to the achievement of a goal even if the action or the plan which is supposed
to achieve it has failed. All these characteristics are very general, and giving
them a formalization is of interest for all kinds of MASs, even if they are not
specified using GDTs.

Goal Decomposition Trees are of course inspired of existing agent models
(Gaia [WJK00], Goals [dBHvdHM00]), agent languages (3APL [HBdHM99]),
and general-purpose formal methods (B [Abr96]). For instance, the indepen-
dant specification of the behaviour of an agent and of its properties is inspired
from Gaia; the goal-oriented specification of behaviours comes from Goal; the
principle of proof obligations is inherited from the B method, as well as the
principle of automatically generating an implementation from a verified spec-
ification; the specification of the actions of agents by pre- and post-conditions
can be found in 3APL. But many aspects of the method are completely new.
This is for instance the case of the compositional aspect of the proof system,
the nondeterministic outcome of an action, and the possibility to extend the
method by defining new decomposition operators.

Parts of the GDT model have already been presented [MFS06,SMF06,
MSSZ07]. In particular, two well-known testbed-applications have served as
an illustration of GDTs: The prey-predator system [SM90] and robots col-
lecting garbage on a grid [BFPW03]. In this article, we present the whole
approach, including the design phase, generation of proof obligations and the
implementation phase. The operational semantics and the associated valida-
tion of our approach is completely new, and of independent interest. Finally,
we describe two extensions of the model: To external goals and to parameter-
ized GDTs. We illustrate the concepts on simple examples, and we refer the
reader to the articles mentioned above for applications of the model to larger
systems. Likewise, we do not provide the details and proofs for every operator
available; we refer the reader to the companion of this paper [MSZ08].

The paper is organized as follows. Section 2 gives the essential formal pre-
liminaries about logic. Sections 3 to 6 describe the model in details, by describ-
ing our assumptions about agents and the environment, the notion of a GDT,
the proof process and the implementation by automata, respectively. Section 7
describes the extensions to external goals and parameterized GDTs. Finally,
Section 8 gives a detailed comparison of our approach to other existing ones
for the design of MASs, and Section 9 presents a discussion and future work.

4

2 Logical setting

The GDT model makes use of logic at three levels: For satisfaction conditions
of goals, for proof obligations, and for verifying the correctness of our approach.

2.1 Specification

Logic is used in the specification phase essentially for expressing satisfaction
conditions of goals, preconditions of actions, and branching conditions. Thus
the same logical language as the one used for describing the environment is
to be used. We write L for this language. Predicate logic is a good example,
where variables and constants represent objects in the worlds and predicates
represent their properties.

We write |= for the classical consequence relation associated with L, that
is, for any two formulae ϕ1, ϕ2 in L, ϕ1 |= ϕ2 holds if every model of ϕ1 is a
model of ϕ2. We also write V (ϕ) for the set of all free variables occurring in
a formula ϕ, and given a set of variables V , we write LV for the restriction of
L to those formulae in which all free variables belong to V .

The design phase generally requires the ability to express goals whose suc-
cess depends on the evolution of some predicate, such as the goal of incre-
menting a value. Thus the designer may use an extension of the chosen logic
in which two instants in time are referred to. The value of a variable v at
the first instant will be denoted by v, whereas its value at the second instant
will be denoted by v’. Observe that a similar notation is used, for instance,
in TLA [Lam96]. If V is a set of (unprimed) variables, we also write V ′ for
{v′ | v ∈ V }.

Example 1 (logic) Consider a standard logic of arithmetics, and let v1, v2 be
two variables with domain N. The formula v1 + v2 = 4 is a formula in L, while
the formula v′1 > v1 +v2 is one in L′. The former is true exactly when the sum
of the values assigned to v1 and v2 is 4, and the latter is true when the value
of v1 is more than the sum of v1 and v2 was (see Section 2.2).

Importantly, we do not formally assign any temporally-dependent link be-
tween variables v and v’. Thus the formulae over V ∪ V ′ are simply formulae
in L with an extended set of variables (in LV ∪V ′). So as to avoid ambiguities,
we write L′ for the language of such formulas. Observe that primed variables
cannot be themselves primed, that is, a formula in L′ refers to at most two
instants in time.

2.2 Proof obligations

Formulae in L′ are evaluated with respect to couples of interpretations for L,
with the natural semantics. In particular, if ω is a world (interpretation) for
L, we write ω′ for the world that assigns to each variable v′ the value of v in

5

ω. If (ω1, ω2) is a couple of interpretations for a formula ϕ ∈ L′, we refer to
ω2 as the primed instant.

We will sometimes need to extend these notions to a greater (but finite)
number of instants in time. In particular, we will use formulae referring to
three distinct instants in time, represented by plain variables, variables super-
scripted with tmp (for temporary), and primed variables, in this order, with a
straightforward semantics over triples of interpretations.

Example 2 (continued) The couple ({v1 = 1, v2 = 2}, {v1 = 4, v2 = 0}′)
satisfies the formula v′1 > v1 + v2 (regardless of the value assigned to v2

at the primed instant), while ({v1 = 1, v2 = 2}, {v1 = 2, v2 = 0}′) does
not. The formula (vtmp > v ∧ v′ = vtmp) is satisfied by the triple of worlds
({v = 1}, {v = 2}tmp, {v = 2}′).

In the process of generating proof obligations, we will sometimes need to
refer to the same formula ϕ at various instants in time. For instance, some
goals in GDTs will be lazy, that is, at execution time the agent will first
decide whether the satisfaction condition ϕ is already true and only otherwise,
execute some plan so as to make it become true after execution.

If ϕ is a formula, then ϕ[V/V′] denotes the formula obtained from it
by substituting every occurrence v of an unprimed variable with its primed
counterpart, and similarly with superscript tmp. We will use the following
notation for translating formulas along time.

Notation 1 (translation of formulas) Let ϕ ∈ L. Then we write At ′(ϕ)
for ϕ[V/V′] and At tmp(ϕ) for ϕ[V/Vtmp].

If ϕ ∈ L, we also write T ′(ϕ) for At ′(ϕ), T ′
tmp(ϕ) for At ′(ϕ), and T tmp(ϕ)

for At tmp(ϕ). If ϕ ∈ L′\L, then we write T ′(ϕ) for ϕ, T ′
tmp(ϕ) for ϕ[V/Vtmp],

and T tmp(ϕ) for ϕ[V′/Vtmp].

The mnemonics is that the superscript of At denotes the instant when a
formula is translated to. The superscript of T denotes the instant at which
the formula is evaluated, with respect to the (past) instant denoted by the
subscript. In some sense, the formula is translated to between the instants
denoted by the subscript and the superscript, respectively.

Example 3 (continued) Let ϕ be v1 + v2 = 4. Then At ′(ϕ) denotes v′1 + v′2 = 4
and At tmp(ϕ) denotes vtmp

1 + vtmp
2 = 4. Now T ′(ϕ) and T ′

tmp(ϕ) both denote

v′1 + v′2 = 4, while T tmp(ϕ) denotes vtmp
1 + vtmp

2 = 4.
Now let ϕ be v′1 > v1 + v2. Then T ′(ϕ) denotes v′1 > v1 + v2, T ′

tmp(ϕ)

denotes v′1 > vtmp
1 + vtmp

2 , and T tmp(ϕ) denotes vtmp
1 > v1 + v2.

Finally, we will often need to consider the projection of formulae along
two dimensions: Sets of variables and time. Intuitively, projecting a formula
onto a set of variables consists in forgetting (existentially quantifying) any
other variable, and projecting a formula to an instant consists in existentially
quantifying every variable at the other instants.

6

Definition 1 (projection) Let ϕ ∈ L and W ⊆ V (ϕ); write U for V (ϕ)\W .
Then a projection of ϕ onto W , written (ϕ)W , is any formula (ϕ)W ≡ ∃Uϕ.

If ϕ ∈ L′ = LV ∪V ′ , then a projection of ϕ onto W ⊆ V , written (ϕ)W ,
is any projection of ϕ onto W ∪ W ′. A projection of ϕ onto W on the right,
written (ϕ)rW , is any projection of ϕ onto V ∪ W ′. A projection of ϕ onto
W on the left, written (ϕ)ℓW , is any projection of ϕ onto W ∪ V ′. Finally, a
projection of ϕ onto the right, written (ϕ)r, is any projection of ϕ onto V ′.

If ϕ ∈ LV ∪V tmp∪V ′ , then a projection of ϕ onto the left and right , written
(ϕ)ℓr, is any projection of ϕ onto V ∪ V ′.

Example 4 (projection) Let V = {v1, v2, v3} and W = {v1, v2}. With the
notation of Definition 1, we have U = {v3}. If ϕ is (v1 ≥ 0)∧(v3 ≥ 0)∧(v1+v3 =
4)(v3 ≤ v2), then (ϕ)W , defined to be (v1 ≥ 0) ∧ (v2 ≥ 0) ∧ (v1 + v2 ≥ 4), is a
projection of ϕ onto W .

Now let ϕ be (v2 ≥ 0) ∧ (v3 ≥ 2) ∧ (v′1 ≥ v2 + v′3) ∧ (v′3 ≥ v3 + 1). Then
(ϕ)W = (v2 ≥ 0)∧(v′1 ≥ v2 +3) is a projection of ϕ onto W . We also have that
(ϕ)rW = (v2 ≥ 0)∧(v3 ≥ 2)∧(v′1 ≥ v2 +v3 +1) is a projection of ϕ onto W on
the right. Observe that, contrary to the previous case, all information about
v3 on the “left” instant is retained here. Finally, (ϕ)ri = (v′3 ≥ 3) ∧ (v′1 ≥ v′3)
is a projection of ϕ onto the right.

Finally, let ϕ be (v1 ≥ 2) ∧ (vtmp
1 > v1 + v2) ∧ (v′2 = vtmp

1 − 1). Then
(ϕ)ℓr ≡ (v1 ≥ 2) ∧ (v′2 ≥ v1 + v2 − 1) is a projection of ϕ onto the left and
right.

Projection ϕ onto a subset of variables and/or some instant can also be
seen as computing the set of all consequences of ϕ which concern only these
variables and/or this instant. In particular, for ϕ ∈ L′ and W ⊆ V (ϕ), we have
ϕ |= (ϕ)rW |= (ϕ)W and for ϕ ∈ LV ∪V tmp∪V ′ , we have ϕ |= (ϕ)ℓr |= (ϕ)r.

Importantly there are in general many formulae logically equivalent to the
projection of ϕ. As a consequence, the precise one computed for, e.g., a proof
obligation may have an impact on the possibility to automatically prove (or
disprove) this obligation.

Moreover, in general it is a very hard problem to compute a projection,
even in the propositional case [LLM03]. But there are efficient algorithms
for computing some approximations of a projection, based on the following
syntactic properties.

Proposition 1 (computing projections) Let L be a subset of standard
first-order logic. Let ϕ1, ϕ2 be two formulas in LV , and let W ⊆ V . Then:

– ((ϕ1 ∨ ϕ2))W ≡ (ϕ1)W ∨ (ϕ2)W ,
– ((ϕ1 ∧ ϕ2))W |= (ϕ1)W ∧ (ϕ2)W ,
– if V (ϕ1) ∩ V (ϕ2) = ∅, then ((ϕ1 ∧ ϕ2))W ≡ (ϕ1)W ∧ (ϕ2)W ,
– ¬((ϕ1)W) |= ((¬ϕ1))W ,
– (∃Xϕ1)W ≡ ∃W ((ϕ1)W) (X ∩ W = ∅ holds by definition of projection),
– (∀Xϕ1)W |= ∀W ((ϕ1)W) (X ∩ W = ∅ holds by definition of projection).

7

For instance, if ϕ is a propositional formula in disjunctive normal form,
then it can be seen that projecting it onto a subset of variables simply consists
in removing any literal over another variable.

2.3 Validation of our approach

We use linear temporal logic (LTL) for giving an operational semantics to
GDTs. Given a set of Boolean variables V , the LTL formulae over V are these
formulae built from the variables in V , the usual propositional connectives (we
will use ¬,∧,∨,→) and the standard modalities 2, ⋄ and ◦.

LTL formulae are evaluated with respect to traces, that is, infinite se-
quences of worlds (ω1, ω2, ω3, . . .), where each world is labelled with an inter-
pretation of the variables. Traces implicitly define an order on worlds. Thus,
if the trace is clear from the context, we will use ωa ≺ ωb to denote that ωa

(properly) preceedes ωb in this trace, that is, ωa = ωk and ωb = ωk′ for some
k, k′ with k < k′. Moreover, in this case ωa is said to be before ωb. We will
similarly use notation ωa � ωb, ωa ≻ ωb (ωa is after ωb) and ωa � ωb. Finally,
we will write ◦ωa for the world immediately following ωa in the trace.

The validity of an LTL formula ϕ is evaluated with respect to a trace τ
and a world ωa in it, according to the standard semantics. We write τ, ωa |= ϕ,
or ωa |= ϕ when the trace is clear.

Example 5 (LTL formulae) Let v1, v2 be two Boolean variables. Then ϕ =
◦(v2∧2(¬v1)) is an LTL formula. Assume ωa, ωb both assign v1 to false and v2

to true, and ωc assigns both to false. Then the sequence τ = (ωa, ωb, ωc, ωc, . . .)
(ωc infinitely repeated) is a trace. We have τ, ωa |= ϕ but τ, ωb 6|= ϕ (since
◦ωb = ωc |= ¬v2).

3 Environment and agents

In this section, we present the assumptions we make about the environment
and the agents, and introduce some notions and notation. Throughout the
section (and the rest of the paper as well), an underlying logic L is assumed
(think, e.g., of predicate logic).

3.1 Environment

The environment is assumed to be described through a set of variables , which
are variables in L. This set is denoted by VE .

The only assumptions about the environment are an invariant and a set
of stable properties. The invariant is a formula iE ∈ LVE

, which is always true.
Consequently, it can always be assumed to be true when initiating an action,
but it must also be preserved by the agents’ behaviour. Proof obligations
will enforce that. The semantics in temporal logic is simply 2iE . Note that

8

invariants, like in formal methods such as B [Abr96] or Z [Spi87], give in
particular a mean to formalize the domain of each variable, with properties
such as v ∈ N, provided the logic is expressive enough.

Stable properties are properties which, once true, are guaranteed to remain
true, but which need not become true one day. Once again, they must be
preserved by the agents. The set of stable properties is denoted by SE ; it is
just a finite set of formulae in LVE

. The semantics in temporal logic is that for
all sE ∈ SE , 2(sE → ◦sE) holds.

All these assumptions are intended to come from a modelisation of the
environment which takes place prior to the use of our method. To sum up, the
environment can be defined as follows.

Definition 2 (environment) An environment is a triple E = (VE , iE , SE),
where VE is a set of variables, iE ∈ LVE

, and SE ⊆ LVE
; SE is assumed to be

finite. Formulae 2iE and 2(sE → ◦sE) (for all sE ∈ SE) hold.

Example 6 (environment) Consider the Robots on Mars Problem. The content
of each cell (x, y) on the surface can be modelled by an environment variable,
written G, assigning to each cell a value dirty if there is garbage on the cell,
and clean otherwise. Then an invariant property could be: G ∈ xmin..xmax ×
ymin..ymax → {clean, dirty}.

3.2 Agents

Each agent is essentially described through a set of variables and a set of
actions (which it can perform). Moreover, it is attached a behaviour using
these variables and actions.

Each action is described by a precondition and a postcondition, as, e.g.,
in 3APL [HBdHM99]. Both are described in the underlying logic L (or L′,
see below). Nevertheless, we do not assume that actions always succeed. That
is, the postcondition may not be established by the action, even if the pre-
condition has been respected. In this case, a guaranteed property on failure
(GPF) is established. The GPF of an action will most of the time assert that
variables have not changed value, but it can assert more complex things (see
Example 7).

Definition 3 (action) An action a is a 4-tuple (namea, prea, posta, gpf a),
where namea is the name of the action, prea is a formula in L and posta and
gpf a are formulae in L or in L′. Let αa be a world at which an agent starts to
execute such an action. Then αa |= prea must hold.

Example 7 (action) Let a1 be an action allowing a robot to move horizon-
tally by one cell to the right on a 2D grid. This action may succeed, but
it may also fail (if the target cell is not free), and then the robot stays in
the same cell. Moreover, the robot cannot execute the action at all if it is
in the rightmost column of the grid. Then this action could be described by

9

namea1
= moveRight , prea1

= (x < xmax), posta1
= (x′ = x+1∧y′ = y), and

gpf a1
= (x′ = x ∧ y′ = y). The GPF is necessary to specify that the failure of

the action does not move the robot anywhere.
As another example, consider an action a2 allowing a robot to (try to)

open a door. Then it could be described as follows: namea2
= open , prea2

=
doorClosed , posta2

= doorOpen , and gpf a2
= doorLocked . Observe that posta2

is a formula in L, that is, it is evaluated only with respect to the current instant
(that when the action finishes). Also observe that the GPF of the action allows
to formalize the knowledge acquired from failure of the action.

So as to distinguish between actions which always succeed and actions
which may fail, and to reason about them for specifying and verifying be-
haviours, we introduce the following definition.

Definition 4 (NS/NNS, actions) An action a is said to be necessarily
satisfiable (NS) if for all worlds ωa (resp. αa) at which an agent ends (resp.
starts) executing a, (αa, ω′

a) satisfies T ′(posta). For such an action a, we assume
gpf a =⊥.

Otherwise, a is said to be nonnecessarily satisfiable (NNS). In this case, for
all worlds αa, ωa as above, either a succeeds, and (αa, ωa)′) satisfies T ′(posta),
or a fails and (αa, ω′

a) satisfies T ′(gpf a).

Importantly, every action is assumed to be either NS or NNS in the above
meaning, that is, every action establishes its postcondition in case of success
and its GPF in case of failure. It is also assumed that any execution of an
action terminates (in a finite amount of time).

Actions are the means by which an agent can modify the values of variables.
Each agent A knows a subset VE (A) of the set of environment variables VE ,
and also owns a set of internal variables, written Vi(A). The semantics is that
only A is allowed to modify the values of the variables in Vi(A).

Finally, like the environment, an agent A has to respect an invariant iA and
a set of stable properties SA concerning its internal variables. At the beginning
of its lifetime, it is initialized by an initialization clause initA, which gives
the initial values of its variables. Naturally, this clause must establish iA.

Definition 5 (agent) Let E be an environment. An agent A (in E) is a tuple:

(Vi(A), VE (A), initA, iA, SA,ActionsA, BehA)

where Vi(A) is a set of variables with Vi(A)∩ VE = ∅, VE (A) ⊆ VE , initA is a
mapping from Vi(A) to values, iA ∈ LVi(A), SA ⊆ LVi(A) (and is finite), and
ActionsA is a set of actions whose preconditions, postconditions, and GPFs
concern only variables in VE(A) ∪ Vi(A). and BehA is the behaviour of the
agent 2. It is assumed that the interpretation of Vi(A) as defined by initA

satisfies iA.

2 In our method, this behaviour is specified by a GDT, described in Section 4.

10

Again, this description comes as the result of agentifying the problem at
hand, which takes place prior to the use of our method. However, some ad-
ditional descriptors may be added by the designer in charge of proving the
agent’s behaviour.

Example 8 (agent) Mapping a mobile robot to an agent may induce descriptors
for the current angle of its wheels. Then the invariant of the agent could
enforce that this angle is never greater than 90 degrees. Other descriptors
could concern the resources of the agent, such as an amount of gasoline.

However, so as to prove the correctness of some behaviour of this agent,
for instance one aiming at reaching a given location, it could be useful to add
a descriptor for its current distance to a goal.

We also wish to point out that our formalism is general enough for taking
biased perceptions into account. For instance, assume an environment variable
c which formalizes the color of an object as a tuple (r, g, b). A black-and-white
perception of this object by an agent may be formalized by introducing a new
Boolean environment variable, say bw, adding to the environment invariant
iE a property ensuring that bw is “black” when (r, g, b) is dark enough, and
“white” otherwise, and finally letting bw but not (r, g, b) in VE(A).

We now give an important assumption concerning internal variables. This
assumption states that only actions modify their values. That is, we assume a
kind of frame axiom for all internal variables of an agent.

Assumption 1 (frame axiom) Let A be an agent, and let ϕ ∈ LVi(A). If ω
is a world such that ω satisfies ϕ and ◦ω does not satisfy ϕ, then this is the
result of A beginning an action a at world ω (and finishing it at world ◦ω) so
that ω |= prea and either ◦ω |= posta |= ¬ϕ or ◦ω |= gpf a |= ¬ϕ.

Finally, since internal variables of agents are of great importance in proof
obligations, we will use the following notation.

Notation 2 (internal variables) Let A be an agent. We write (ϕ)i for (ϕ)Vi(A),
that is, for the projection of ϕ onto the set of all internal variables of agent
A. Similarly, we will write (ϕ)ri for (ϕ)rVi(A), (ϕ)ℓi for (ϕ)ℓVi(A), (ϕ)i,V for
(ϕ)Vi(A)∪V and (ϕ)r(i,V) for (ϕ)r(Vi(A)∪V).

3.3 Parallelism model

As concerns the interactions between agents, we use the model of interleaved
parallelism. That is, we assume that the behaviours of the agents may be in-
terleaved in any manner, but that actions are supposed to be noninterruptible
(intuitively, atomic).

More precisely, the evolution of the environment results from any interleav-
ing of the traces of the agents, as defined in Section 4.3. Nevertheless, when
an agent is executing an action, the environment is assumed to change only
according to this action. This is similar to assuming a restricted frame axiom

11

on the values of variables, so that environment variables do not change values
while an agent is executing an action unless explicitly stated by this action.
Contrastingly, their value can a priori change without any restriction while
no agent is executing any action.

4 Specification of the behaviour of agents

In this section, we present the design phase in details. In our approach, to
each agent in the system a behaviour is attached. The agent will execute this
behaviour when some conditions are met. The language which we propose the
designer of the agent to use is that of Goal Decomposition Trees (GDTs). The
GDT of an agent thus specifies how it can achieve its main goal, using its
variables and actions.

A GDT is essentially a tree of goals, in which each goal is decomposed
into simpler subgoals, combined via a decomposition operator. In order to
formally define GDTs, we first define leaf and internal goals, and only then
GDTs themselves.

Importantly, we formalize the behaviour of an agent as a single decom-
position tree, aiming at achieving a main goal. Nevertheless, it is easy to see
that the extension to a set of GDTs for each agent can be easily done, with
mutually exclusive triggering contexts or not. In particular, this can be for-
malized as a single GDT whose root goal is decomposed into several Case(·, ·)
branches (similar to the “switch” construct in imperative languages).

4.1 Goals

Each node in a GDT corresponds to a goal of the agent. In particular, the
root corresponds to its main goal. Consequently, to each node a satisfaction
condition is attached as well as a plan to achieve this condition.

Just as postconditions of actions, the satisfaction condition of a node may
concern only the state of the universe at which it is evaluated, or relate the
state when the execution of the node starts and that when it stops. Naturally,
in the former case it is a formula in L, whereas in the latter it is a formula in
L′.

Leaves of the GDT correspond to elementary goals, in the sense that in
their context, an action of the agent allows to achieve the satisfaction condi-
tion. On the contrary, internal nodes need to be decomposed into subgoals.
Consequently, to each internal node a decomposition operator is attached as
well as an ordered set of nodes (whose number depends on the decomposition
operator). The operator specifies how these children must be executed.

We distinguish two types of nodes in a GDT. If a node N is tagged lazy
(L) by the designer, then when execution comes to N , the agent first evaluates
the satisfaction condition of N . Then it executes the action or decomposition
attached to N if and only if this satisfaction condition is not already true. If

12

N is tagged as nonlazy (NL), then the agent always executes the associated
action or decomposition.

Intuitively, any node whose satisfaction condition is in L, that is, concerns
only the current state of the universe, ought to be lazy, whereas any node
whose satisfaction condition is in L′ \ L cannot be lazy. However, for specific
needs, other combinations are permitted.

Example 9 (laziness) A node with satisfaction condition v1 + v2 = 4 will typi-
cally be tagged as L, meaning it is worthless trying to achieve this condition if it
is already true. On the contrary, a node with satisfaction condition v′1 > v1+v2

is necessarily NL.
As a special case, consider the goal of lighting a candle with a match.

The lazy fashion consists in checking first whether the candle is alight, and
strike the match only if it is not. On the contrary, the nonlazy approach always
strikes the match. Thus, in the lazy fashion, some wind may rise up while we are
checking the candle state, potentially preventing us from striking the match.
Contrastingly, with the nonlazy fashion, we are guaranteed to succeed. Thus,
in this case it could be interesting to tag the node NL even if it could be tagged
L (and this interest would show up when trying to prove the obligations).

Orthogonal to this distinction, we also distinguish necessarily satisfiable
(NS) nodes from nonnecessearily satisfiable (NNS) ones. The notion is similar
to that for actions (see Definition 4): If a node N is labelled NS, then its
satisfaction condition is guaranteed to be true when its action or decomposition
has been executed. On the contrary, if N is labelled NNS, then execution may
fail to make its satisfaction condition true.

Nevertheless, contrary to the case of actions (and to laziness), the necessary
satistiability of a node does not have to be known in advance nor specified by
the designer. Instead, it can be automatically inferred from the decomposition
operators and the necessary satisfiability of elementary goals (see Section 4).
If the designer however labels some nodes, then these inference rules allow her
to check whether the labels are correct.

Example 10 (necessary satisfiability) Consider the goal of moving by one square
up and left on a 2D-grid, with an action allowing to move up by one square,
and one allowing to move left by one square. Then achievement of the main
goal can be decomposed into the execution of both actions once, in any order
(operator And). If both execution succeed, then the main goal is achieved. But
if any one fails, then the main goal is normally not achieved. Thus the node
corresponding to the main goal can be soundly labelled NS if the two children
nodes are labelled so, but it cannot a priori if one child is not.

Finally, like for actions, to each (NNS) node a guaranteed property on fail-
ure (GPF) is attached, which is guaranteed to be true in case the execution
of the node fails. Typically, GPFs will state what variables have not changed
value when execution fails. Once again these GPFs can be automatically in-
ferred (see Section 5.1).

13

Definition 6 (leaf node) Let E be an environment, and let A be an agent.
A leaf node N (of a GDT for A in E) is a 6-tuple:

(nameN , aN , scN , gpf N , lzN ,nsatN)

where aN ∈ ActionsA, scN , gpf N ∈ L′
VE (A)∪Vi(A), lzN ∈ {L,NL}, and nsatN ∈

{NS ,NNS}. Moreover, if lzN = L, then we must have scN ∈ L and if nsatN =
NS , then gpf N =⊥.

Definition 7 (internal node) Let A be an agent in an environment E . An
internal node N (of a GDT for A in E) is a 7-tuple:

(nameN ,OpN ,ChildrenN , scN , gpf N , lzN ,nsatN)

where scN , gpf N , lzN ,nsatN are as in Definition 6, OpN is a decomposition
operator, and ChildrenN is a sequence of internal and leaf nodes whose length
matches the arity of OpN .

4.2 Goal decomposition trees

A GDT is essentially a tree built of internal and leaf nodes, but some more
information is attached. First of all, the execution of a GDT is meant to begin
only when some conditions are met. This is specified by a trigerring context,
written tcT , and a precondition, written preT .

The precondition preT formalizes the prerequisite for the GDT to be exe-
cuted. In particular, if an agent executes its GDT several times, then it must
preserve preT . Then, the semantics of T is that execution starts each time
preT is true and tcT becomes true. Note that this results in a potentially ever-
lasting behaviour. However, a bounded number of executions can be enforced
by an internal variable of the agent, whose value is incremented each time T
is executed but is upper-bounded in tcT .

Definition 8 (GDT) Let E be an environment, and let A be an agent. A
goal decomposition tree (GDT) for A in E is a triple (preT , tcT ,RootT), where
preT , tcT ∈ LVE (A)∪Vi(A) and RootT is an internal or leaf node for A (and thus,
implicitly, a tree of such nodes).

Example 11 (GDT) Figure 1 gives an example of a GDT for reaching a loca-
tion on a grid. The agent has four internal (integer) variables, written x, y for
those describing its position, and xt, yt for those describing the position of its
target location (d denotes a distance between positions). Moreover, it has two
actions, written h-moveOneCell and v-moveOneCell, which allow it to move
one cell towards the target location along the x or y axis, respectively.

The GDT reads as follows: The root node reach is decomposed into the
iteration of node move, which itself is decomposed into two (non mutually
exclusive) subcases, one when a horizontal move is needed and one when a
vertical move is needed. Here, all nodes are supposed to be necessarily satisfi-
able and nonlazy, except for the root node which is lazy.

14

y 6= yt

move

Iter

v-move h-move

x 6= xt

L

reach

Case(·, ·)

screach = (x = xt) ∧ (y = yt)

scmove = d((x′, y′), (x′

t, y
′

t)) < d((x, y), (xt, yt))

sch−move = |x′ − x′

t| < |x − xt|

ah−move = h-moveOneCell

preh−moveOneCell = (x 6= xt)

posth−moveOneCell = |x′ − x′

t| = |x − xt| − 1

Fig. 1 GDT for the goal of reaching a location on a grid (Example 11)

4.3 Operational semantics of GDTs

We now explain how GDTs are given a formal semantics. This semantics allows
us to formally prove the correctness of proof obligations and generation of
behaviour automata. More generally, it allows us to formally define how a
GDT is intended to be executed, and to define each operator available.

We wish to emphasize that this semantics describe the intended behaviour
of the agent, even if the proof obligations of the GDT are not verified. In
this case, the satisfaction conditions of nodes may not be established by the
execution, and the execution of some nodes may not terminate. This however
allows to use our implementation by automata and, for instance, use model-
checking techniques on unverified GDTs (see Section 6).

The operational semantics is given by rules in LTL. For an agent A, these
rules are all evaluated in the same trace, corresponding to the lifetime of A.
In particular, the LTL operator ◦ refers to the next instant relative to the
internal clock of A. More precisely, for an instant ω, we define ◦ω (relative to
A) to be the earliest instant after ω when A has performed exactly one atomic
action or evaluated one formula of L or L′. In particular, anything might have
happened in the environment in the meantime (see our parallelism model in
Section 3.3).

Our LTL rules are built on special Boolean variables. For simplicity, we
say that at execution time, an agent is executing a node N in its GDT when
it is executing the action or one of the children associated to N , or when it is
deciding the satisfaction condition of N , etc.

Definition 9 (LTL atoms) Let N be a node in the GDT of an agent A, and
let ω be an instant in the lifetime of A. Then ω |= initN (resp. ω |= endN)
if and only if A starts (resp. ends) executing N at instant ω, and ω |= inN if
and only if A starts, finishes, or is currently executing N .

Now if ω |= inN , write αN for the latest world before or equal to ω and
satisfying initN . Then ω |= scN if and only if the couple of interpretations
(αN , ω′) satisfies scN ; if ω 6|= inN , the value of scN at it is not defined. Finally,

15

ω |= satN if and only if ω |= endN ∧ scN , and ω |= nonsatN if and only if
ω |= endN ∧ ¬scN .

Importantly, we view these atoms as signals sent between nodes in a GDT.
For instance, we will consider satN as a signal sent by a child node to its
father node in a GDT exactly when the corresponding goal is achieved. Thus
we implictly assume that unless entailed otherwise by the rules, all atoms are
always false. The only exceptions are inN and scN , whose values are deter-
mined by whether N is being executed and whether its satisfaction condition
is currently true, respectively.

In particular, with this assumption, and provided the operational semantics
of operators respect the general rules given in Definition 10, we are guaranteed
that the set of rules is consistent, since signals have only positive occurrences
by construction.

Moreover, seeing LTL atoms as signals being sent between nodes makes it
quite natural to envision the implementation of behaviours specified by GDTs
using events. The implementation by automata (Section 6) is a particular type
of this event-style programing.

Example 12 (LTL atoms) Assume an agent moving on a one-dimensional finite
grid with an action for moving by one position to the left, and one for moving
by one position to the right. Let N be a node in its GDT, modelling the goal
of reaching the last but one square on the right, and assume the specified
behaviour for achieving this goal consists of iterating moves to the right until
failure, then moving once to the left. Write R for the iterated node, and L for
the last one.

Assume a situation where the agent is three moves from the right border
(denoted by x = 3), and executes the specified behaviour. Then the atoms
true at each instant are as follows (atoms inR and inL are omitted).

Instant Node N Node R Node L

ω0 (x = 3) initN , inN initR

ω1 (x = 2) inN endR, scR, satR

ω2 (x = 2) inN initR

ω3 (x = 1) inN , scN endR, scR, satR

ω4 (x = 1) inN , scN initR

ω5 (x = 0) inN endR, scR, satR

ω6 (x = 0) inN initR

ω7 (x = 0) inN endR,nonsatR

ω8 (x = 0) inN initL

ω9 (x = 1) inN , endN , scN , satN endL, scL, satL

We wish to emphasize that at instants ω3 and ω4, the main goal is satisfied,
but since the specified behaviour is to go on to the right (the agent does not
even notice that its goal is satisfied), the endN atom is not true, and thus the
satN signal is not sent.

16

All nodes

For 1 ≤ i < j ≤ n, 2(¬inNi
∨ ¬inNj

) (G.1)

For 1 ≤ i ≤ n, 2(inNi
→ inN) (G.2)

2(¬initN ∨ ¬endN) (G.3)
2((inN ∧ ¬endN) → ◦¬initN) (G.4)

Leaf nodes 2(initN → ◦endN) (G.5)

L nodes
2(initN → ◦(scN → endN)) (G.6)
2(initN → ◦(¬scN → initNL

N
)) (G.7)

Table 1 Operational semantics for GDTs (Definition 10)

We now give the operational semantics of GDTs, including rules common
to all decomposition operators. These rules will serve as assumptions in proof
obligations, but on the other hand, the decomposition operators and the de-
signed GDT must obey them. For instance, a designer cannot use a node as a
child of two different nodes nor introduce cycles in a GDT.

Definition 10 (well-formed GDT) A GDT is said to be well-formed if
each of its nodes N satisfies the rules in Table 1, where N1, N2, . . . , Nn denote
the children of N if it is an internal node.

Intuitively, the rules enforce the tree structure of a GDT (Rules (G.1), (G.2)
and (G.4)), the fact that executing a node requires at least one step (Rule (G.3)),
and that elementary goals (essentially, actions) terminate and determine the
clock for the agent (Rule (G.5)). As for lazy nodes, the rules enforce that
execution terminates immediately if the satisfaction condition is already true
(Rule (G.6)), and otherwise is followed (at the next instant) by the execution
of the NL version of the node (initNL

N is a shorthand for that).

4.4 Decomposition operators

We now describe the eight decomposition operators currently available. We
concentrate on two of them so as to illustrate the model, and briefly present
the other ones. We however want to emphasize that any decomposition op-
erator can be introduced, as soon as it comes with an operational semantics
respecting well-formedness of GDTs, with (validated) proof obligations and
with a (validated) automatic transformation into behaviour automata.

Decomposition operators essentially specify which subgoals of a node will
be executed, in which order and how many times, depending on the environ-
ment state and on the outcome of actions. Thus for each operator, we give
the associated operational semantics. Moreover, we describe the schema for
inferring the necessary satisfiability of the parent goal from the necessary sat-
isfiability of its children.

As a general rule, we depict decompositions as trees, with the operator
written on a link through children. Nodes are depicted into ellipses with an “L”
attached if they are lazy, and double-circling if they are necessarily satisfiable.

17

L

N2 N3

N1

N4 N6

N5

L

L

Op1
Op2

Fig. 2 Representations of decompositions (Example 13)

SeqAnd

2(satN1
→ ◦initN2

) (SA.1)
2(nonsatN1

→ ◦endN) (SA.2)
2(satN2

→ (endN ∧ satN)) (SA.3)
2(nonsatN2

→ ◦endN) (SA.4)
NL 2(initN → initN1

) (SA.5)

Table 2 Operational semantics for SeqAnd (Definition 11)

Example 13 (graphical representation of GDTs) Figure 2 gives two example
decompositions. The one on the left uses a ternary operator Op1, with parent
node N1 and children N2 to N4. The one on the right uses a unary operator.
Nodes N1, N3, N6 are NS while the others are not, and nodes N1, N4, N6 are
lazy, while the others are not.

The simplest operator, which we denote by SeqAnd, is a sequential “and”.
This operator specifies that in order to achieve the parent goal, both children
must be executed in the specified order, and both must succeed. In particular,
the parent goal can be soundly labelled NS if and only if both children are so.

The formal definition is as follows. The rules first enforce that execution
begins immediately with the first child (Rule (SA.5)); the case when N is lazy
is derived using general rules (G.6) and (G.7). Then the rules enforce that if
the first child fails, then execution terminates at the next step, and otherwise
goes to the second child. Importantly though, observe that failure of one child
does not automatically trigger signal nonsatN (nonsatisfaction of the parent
goal); indeed, it can be the case that the decomposition fails but that the
parent goal is achieved for some other reason. Rules (SA.2) and (SA.4) leave
a delay for evaluating that.

Notice that due to the parallelism model described in Section 3.3, the
environment may be modified between the execution of two subgoals of an
agent, because, for instance, another agent acts in the meantime.

Definition 11 (SeqAnd) SeqAnd is the binary decomposition operator de-
fined by the rules in Table 2, where N denotes the parent node with ChildrenN =
(N1, N2).

It is easily seen that, under the interpretation that atoms become true
only if enforced by a rule, this semantics is consistent with the general rules
for operators (Table 1).

18

Iter
2(endN1

→ ◦(¬scN → initN1
)) (I.1)

2(endN1
→ ◦(scN → satN)) (I.2)

NL 2(initN → initN1
) (I.3)

Table 3 Operational semantics for Iter (Definition 12)

Example 14 (SeqAnd) A SeqAnd decomposition can be used for specifying
the behaviour of a robot which must take a photograph of some location.
Indeed, first (successfully) going to the location and then (successfully) taking
a photograph achieves this goal. On the contrary, if one of this goals fails, then
the parent goal is normally not satisfied.

As another example, the goal of computing (x′ =
√

x + 1) can be achieved
by a decomposition of N into N1 and N2 via SeqAnd, where scN = (x′ =√

x + 1), scN1
= (x′ = x + 1), and scN2

= (x′ =
√

x).

We now turn to operator Iter. This operator is a unary one, and allows
to specify iterating behaviours. More precisely, the child must be executed as
long as the satisfaction condition of the parent node is not true. Typically,
executing the child node allows for a progression to the parent goal, as in
Example 11. Nevertheless, modifications in the environment may also realize
the parent goal, in which case the iteration process also stops.

Termination is enforced by proof obligations, which essentially use a (hand-
designed) variant to prove that there is a finite progression towards the parent
goal. As a result, a verified decomposition via Iter always terminates and thus,
the parent goal can always be soundly labelled NS, whatever the necessary
satisfiability of its child.

Definition 12 (Iter) Iter is the unary decomposition operator defined by
the rules in Table 3, where N denotes the parent node and N1 denotes the
child node.

Observe that the rules impose that the agent evaluates the satisfaction
condition of the parent node N before deciding to iterate further or to stop.
Noticeably, this entails that N never ends at the same time as its child.

Example 15 (Iter) A decomposition with Iter can typically be used for a robot
whose task is to collect a certain weight of ore. To achieve this task, it can
iteratively collect pieces of ore until the expected weight is reached.

As another example, if the value of a (nonnegative) integer x can only be
decreased one by one, then the behaviour specified by an Iter decomposition
with satisfaction condition of the child node scN1

= (x′ = x − 1) achieves the
goal x = 0.

We now describe the remaining, currently available operators more briefly.
Besides the SeqAnd operator, we have defined the And operator. The se-

mantics is like for SeqAnd, but the agent nondeterministically chooses one of
the children to execute first, and in case of success proceeds to the other one.

19

The family of “or” operators allows to specify several ways to achieve a
goal. All of them are binary (but the generalization is straightforward). The
semantics of a plain Or decomposition is as follows. When executing the parent
goal, the agent nondeterministically chooses one of the children and executes
it. If this execution succeeds, then the parent goal is achieved (provided the
proof obligations have been verified). On the contrary, if the execution of the
first child fails, then the agent executes the other child. The parent goal is
achieved if and only if this second execution succeeds (again, if the obligations
have been verified).

Apart from the plain Or, SeqOr is an available operator. The semantics is
as for Or, but the children are ordered, so that execution always starts with the
first one, and only in case of failure proceeds to the second one. Observe that
a SeqOr decomposition is useless if the first child is NS, since then execution
will never come to the second child.

Example 16 (“or” operators) Operator SeqOr is typically used when an agent
has two strategies for achieving a goal, one of which has little cost but may
fail, and the other has a greater cost but is guaranteed to succeed. Then it is
worth trying first the cheap strategy and, in case it fails, using the other.

This operator is also useful when failure of the first subgoal helps (or allows)
to achieve the second one.

Operators SeqAnd and SeqOr also come in a synchronized version. Re-
call that between execution of the first and second children of such a node,
environment variables may change value so that, for instance, the satisfaction
condition of the first subnode is not true any more when entering the second
subnode of a SeqAnd decomposition. When this is not desirable, the agent may
use special operator SyncSeqAnd(V). This operator is similar to SeqAnd, but
(environment) variables in V are locked between the execution of the first and
second node: Other agents cannot modify their value. A similar construct is
available for SeqOr, resulting in operator SyncSeqOr(·).

Importantly, adding synchronization over environment variables may raise
interblocking problems in the system. We do not address this specific issue
here, since it is widely handled in the literature. Consequently, if such operators
are used, our proof system for GDTs assumes that interblocking cannot occur
at execution time.

Finally, the binary Case(Cond1,Cond2) operator is similar to a “switch”
construct. The semantics is that the agent first decides which of Cond1 or
Cond2 is true. If Cond1 is true, then it executes the first child, and otherwise
it executes the second one. It is required that always one of Cond1 and Cond2

is true. Both can be true at the same time, resulting in a nondeterministic
choice of the child to execute.

5 Proofs of GDTs

In this section, we describe the process for verifying a GDT. The general
idea is that once the GDT is specified, proof obligations can be automati-

20

cally generated from (essentially) the satisfaction conditions of nodes and the
decomposition operators, using schemas.

Proof obligations are entailment relations between formulas in L (in fact,
in LV ∪V tmp∪V ′). The semantics is that if all the obligations generated from a
GDT are true (entailment can be proven), then executing the GDT achieves
the satisfaction condition of each NS node, and achieves either the satisfaction
condition or the GPF of each other node.

Importantly, the proof process of GDTs is compositional. That is, proof
obligations associated to a node N do not depend on nodes other than N
and its children. This allows for verifying parts of a GDT independently from
each other, and for substituting subtrees for others without verifying the whole
GDT again.

In Subsections 5.2 to 5.4, we present the proof schemas for nonlazy nodes.
The schemas for lazy nodes can be derived from these, as presented in Sub-
section 5.5.

5.1 Information automatically inferred

As explained in Section 4, the designer of a GDT gives a precondition and a
trigerring context for the whole GDT, as well as a satisfaction condition for
each node. Moreover, to each leaf an action is attached, which comes with a
satisfaction condition and a GPF.

From this information, other information can be automatically inferred
for each node in the GDT, namely a context in which each node is executed
and a GPF for each node. Thus the designer does not need to specify this
information. Yet it can be used for generating easier proof obligations, since
contexts and GPFs will come as additional hypotheses.

Definition 13 (context) Let T be a GDT, and let N be a node in T . The
context of N , written cN , is any formula in L which is logically equivalent to
the conjunction of all formulae ϕ ∈ L such that for all worlds ω satisfying
initN , ω satisfies ϕ.

Example 17 (context) Consider the GDT on Figure 1. The context of the node
labelled “move” contains (x 6= xt ∨ y 6= yt). Indeed, for any world ω in which
the agent starts executing it (ω |= initmove), we can infer that the satisfaction
condition of its parent node is false (otherwise the iteration would stop).

Observe that contexts are defined as formulae in L, not in L′. That is, they
only refer to the state of the world when execution begins.

In general, it is not possible to compute the exact context of a node. Never-
theless, since contexts will serve as hypotheses in proof obligations, it is enough
to compute a logically weaker formula. Thus, in general, an ideal proof obli-
gation will be of the form cN ∧ premices |= conclusion , but in practice the
obligation computed will be ϕN ∧ premices |= conclusion , with cN |= ϕN .
Clearly, the latter is harder to verify, but if it is verified, then the former is

21

also true. Weakening may occur because inference rules cannot take every in-
formation into account, and because some hard computations may be involved,
like computing projections.

As an illustration of the inference process, we now give the rules for in-
ferring contexts in two particular cases. The proof that the rules for SeqAnd
are valid can be found in the companion paper, and is similar in spirit to the
proof that proof schemas are correct (see Section 5.3). Using the rules for all
decomposition operators allows to infer a (weakened) context for each node in
a GDT, proceeding top-down from the root node.

Proposition 2 (context, root node) Let T be a GDT. Then cRootT
entails

preT and tcT .

Proof Obvious from the definition of preconditions and trigerring contexts for
GDTs (Definition 8). ⊓⊔

Proposition 3 (SeqAnd NL, context) Let T be a GDT, and let N be a
node in T with OpN = SeqAnd, ChildrenN = (N1, N2), and lzN = NL. Then
cN1

|= cN and cN2
|= ((T ′(scN1

))ri)r.

Stated otherwise, when starting to execute N1, from Proposition 3 we
know that the current world satisfies cN . Intuitively, this is just because
since N is NL, execution of N1 begins exactly at the same time as that of
N (Rule (SA.5)). Now when starting to execute N2, we know that the current
world satisfies ((T ′(scN1

))ri)r. Intuitively, this is because N2 is executed only
when N1 has succeeded, at the time instant just following this success. Thus at
this instant, the satisfaction condition of N1 is true as far as internal variables
are concerned (environment variables may have changed value). We only retain
what (T ′(scN1

))ri entails about the current world, that is, ((T ′(scN1
))ri)r.

Dual to contexts are GPFs (of internal nodes). Inference goes bottom-up
in the GDT, starting from the GPFs of actions (at the leaf nodes).

Example 18 (contexts and GPFs) Consider two agents A and At which are
geographically situated. Assume that there is an environment variable post

corresponding to the position of At, and that A has the following three internal
variables: pos denotes its own position, posest denotes the position where it
estimates that At is, and around is true if it estimates that At is not too far,
and false otherwise.

Let N be a node in the GDT of A, corresponding to the goal of meeting
At if it is not too far, that is, scN is around → (pos = posest). Assume N is
NL and is decomposed with OpN = SeqAnd and ChildrenN = (L, R). Node L
corresponds to the NL goal of locating At, modelled by scL = around ∧
(posest = post) and gpf L = ¬around ∧ (pos′est = posest). Finally, Node R
corresponds to the lazy goal of reaching the estimated position of At (in case
locating has been possible), modelled by scR = (pos = posest) and gpf R =
(pos′ = pos).

Assume the context of N is cN = ¬around ∧ d(pos, post) < 10, where d
computes a distance. Then we can infer that the context of L is the same,

22

since N is NL. Observe that if N was lazy, then we could only infer that the
context of L entails (contains) ¬around, since around is an internal variable
of A; we could not infer d(pos, post) < 10, since the distance may change while
A is evaluating scN .

Now we can also infer that around is true in the context of R, since if R is
executed, then L has succeeded and around has not changed value since then
(being internal). On the other hand, we cannot infer that (posest = post) is
true, since At may have moved since execution of L ended.

Finally, since the parent node N fails exactly when one of L or R fails, we
can infer that gpf N entails ϕL ∨ ϕR with ϕL = ¬around ∧ (pos′est = posest)
and ϕR = around∧ (pos′ = pos). Observe that we can infer (pos′ = pos) using
the frame axiom for internal variables (Assumption 1).

5.2 Proof schemas for leaf nodes

Recall that a leaf node is a tuple N = (nameN , aN , scN , gpf N , lzN ,nsatN). In
particular, aN is an action, of the form a = (namea, prea, posta, gpf a).

For verifying that executing such a node indeed establishes scN in case the
execution is successful, and gpf N otherwise, we first have to prove that the
postcondition (resp. GPF) of the action entails scN (resp. gpf N). Now since
the action is meant to be executed, we also have to verify that the context
of the (leaf) node entails its precondition. This results in the following proof
schemas (recall that we assume here that N is NL). Recall that iE (resp. iA)
denotes the invariant of the environment (resp. of agent A).

iE ∧ iA ∧ cN |= prea (1)

iE ∧ iA ∧ cN ∧ T ′(posta) |= T ′(scN) (2)

iE ∧ iA ∧ cN ∧ T ′(gpf a) |= T ′(gpf N) (3)

Example 19 (proof of leaf nodes) Consider the goal of moving a heavy load to
some location post (assumed to be constant) on a 2D-grid. Assume the current
position of the load is described by variable pos, and its weight is described
by a variable w. Assume the agent has one (NS) action, named push, with
precondition w < 100 and postcondition d(pos′, post)) = max(d(pos, post) −
(100 + w), 0), where d computes a distance (the lighter the load, the closer to
the target location it can be pushed at one time).

Assume w can vary through time, but respects the (environment) invariant
iE = (w < 50). Let N be an NL, NS leaf node with context cN = d(pos, post) <
45 and action push. Then the second proof obligation generated is:





w < 50
∧ d(pos, post)) < 45
∧ d(pos′, post) = max d(pos, post) − (100 + w), 0



 |= (pos′ = post)

These rules are valid in the sense that we can prove the following. We refer
the reader to the companion paper for the proof, but the technique is similar
to that used for SeqAnd (see Section 5.3).

23

Proposition 4 (NL leaf nodes) Let N be an NL leaf node, and let a be
the associated action. Then if obligations 1 and 2 (resp. 1 and 3) are proven,
execution of N succeeds (resp. fails) when a succeeds (resp. fails).

Finally, we have to show that leaf nodes respect the invariant and stable
properties of the agent and the environment. As we show right after, this will
be enough to guarantee that the whole GDT does so. The proof schemas are
as follows.

Helem |= At ′(iE) (4)

Helem |= At ′(iA) (5)

Helem ∧ sE |= At ′(sE) (6)

Helem ∧ sA |= At ′(sA) (7)

with Helem = iE ∧ iA ∧ cN ∧ (T ′(posta) ∨ T ′(gpf a)).
The obligations generated from the two last proof schemas have to be

proven for each stable property sE of the environment (resp. sA of the agent).

Proposition 5 (environment) Let N be a leaf node in the GDT of an agent
A, and assume that the obligation generated from Schema (4) is proven. Then
for all worlds αN such that αN |= initN , if αN satisfies iE , then so does ◦αN .
Similarly, for all stable properties sE ∈ SE , if the obligation generated from
Schema (6) is proven, then for all worlds αN such that αN |= initN , if αN

satisfies sE , then so does ◦αN .

Proposition 6 (agent) Assume that for all elementary goals N in the GDT
of an agent A the obligation generated from Schema (5) is proven. Then for
all worlds ω in the trace of A, ω satisfies iA. Similarly, for all stable properties
sA ∈ SA, if the obligation generated from Schema (7) is proven for all nodes
in the GDT of A, then for all worlds ω in its trace, if ω satisfies sA, then so
does ◦ω.

5.3 Proof schemas for SeqAnd

We now consider the proof obligations for SeqAnd decompositions. Let N be
an internal node in a GDT with OpN = SeqAnd and ChildrenN = (N1, N2).
Assume moreover that N is nonlazy. Then the proof schema for the satisfaction
condition of N is as follows.

iE ∧ ΣE ∧ iA ∧ ΣA ∧ cN ∧ (T tmp(scN1
))ri ∧ T ′

tmp(scN2
) |= T ′(scN) (8)

with ΣE =
∧

sE∈SE
(sE → At ′(sE)) and ΣA =

∧

sA∈SA
(sA → At ′(sA)). In-

tuitively, this amounts to considering three instants during the execution of
N : The starting (unprimed) one, the final (primed) one, and an intermediate
one (superscripted with tmp). The starting and final instants correspond to
the execution of the parent node N , and the intermediate instant is the one

24

when execution of N2 starts. The existence of these instants follows from the
operational semantics of SeqAnd, as is proven in Proposition 7.

Thus the proof schema amounts to show that the success of N (that is,
truth of T ′(scN) between the unprimed and primed instants) can be inferred
from:

– what is known to be true when it starts, that is, iE ∧ iA ∧ cN ,
– the fact that stable properties are preserved, as expressed by ΣE and ΣA,
– the success of N1, that is, truth of scN1

between the unprimed and inter-
mediate instants,

– the success of N2, that is, truth of scN2
between the intermediate and final

instants.

Right projection of T tmp(scN1
) onto internal variables is necessary because

the intermediate instant is when N2 starts, which is not simultaneous to the
end of N1, when scN1

is evaluated. As a consequence, environment variables
can change value between the two instants.

Example 20 (proof for SeqAnd, continued) Consider again Example 18, and
assume all invariants are true and there are no stable properties. Then the
proof obligation generated for N is:





¬around ∧ d(pos, post) < 10
∧ aroundtmp

∧ (pos′ = pos′est)



 |= around′ → (pos′ = pos′est)

Observe that only aroundtmp is retained from T tmp(scL), since every infor-
mation about environment variable post disappears with right projection; in-
tuitively, At may change position freely between the instant when A finishes
executing Node L and that when it starts executing Node R.

Also observe that the obligation can be verified since (pos′ = pos′est) is a
hypothesis (as established by execution of Node R). However, around′ could
also come as a hypothesis, since variable around is not modified by Node R
and thus, (around′ = aroundtmp) could be soundly added to T tmp(scR).

Again, these schemas are valid in the sense that if the obligations gener-
ated from them are verified, then executing the decomposition terminates, and
achieves the parent goal.

Proposition 7 (SeqAnd NL, termination) Let N be a node with OpN =
SeqAnd, ChildrenN = (N1, N2), and lzN = NL. Then an execution of N
terminates as soon as the corresponding executions of N1 and N2 do.

Proof Let αN be a world satisfying initN . We have to show that αN satisfies
⋄endN .

From Rule (SA.5), we have αN |= initN1
. Since N1 terminates, there is a

world ωN1
such that ωN1

� αN and ωN1
|= endN1

. Then if ωN1
|= nonsatN1

,
from Rule (SA.2) we get that it satisfies ◦endN , which concludes. Otherwise
we have ωN1

|= satN1
(given the definition of atoms, see Definition 9), and

25

from Rule (SA.1) we get that ωN1
satisfies ◦initN2

; as above we get a world
ωN2

� αN and satisfying endN2
. If it satisfies satN2

, then it satisfies endN by
Rule (SA.3), and otherwise it satisfies ◦endN by Rule (SA.4), which concludes
in both cases. ⊓⊔

Proposition 8 (SeqAnd NL, correctness) Let N be a node with OpN =
SeqAnd, ChildrenN = (N1, N2), and lzN = NL. Assume that proof obliga-
tion (8) is verified for N . Then an execution of N succeeds as soon as the
corresponding executions of N1 and N2 terminate and succeed.

Proof Let ωN be a world satisfying endN , and αN be the latest world before
ωN and satisfying initN . We have to show that (αN , ω′

N) satisfies T ′(scN).
We have αN |= initN1

by Rule (SA.5). Let ωN1
be the earliest world after

αN satisfying endN1
, which exists since N1 terminates. Since N1 succeeds,

we have that (αN , ω′
N1

) satisfies T ′(scN1
), and ωN1

|= satN1
. Now let αN2

be
◦ωN1

. By Rule (SA.1), we have αN2
|= initN2

. Like for N1, there is an earliest
world ωN2

after αN2
which satisfies endN2

and satN2
. Thus (αN2

, ω′
N2

) satisfies
T ′(scN2

).
Now it follows from the tree semantics of GDTs (Definition 10) that ωN2

is
exactly ωN . Finally, summing up and translating world ωN1

to the intermediate
instant, we have:

(αN , ωtmp
N1

) |= T tmp(scN1
) (9)

(αtmp
N2

, ω′
N2

) |= T ′
tmp(scN2

) (10)

Now from (9) we get the stronger (αN , ωtmp
N1

) |= (T tmp(scN1
))ri. From the

frame axiom for internal variables (Assumption 1) and from the fact that
αN2

is defined to be ◦ωN1
, we conclude (αN , αtmp

N2
) |= (T tmp(scN1

))ri. Fi-

nally, (αN , αtmp
N2

, ω′
N2

) satisfies (T tmp(scN1
))ri ∧ T ′

tmp(scN2
). Now by defini-

tion, αN satisfies iE , iA and cN , (αN , ω′
N2

) satisfies
∧

sE∈SE
(sE → At ′(sE))

and
∧

sA∈SA
(sA → At ′(sA)) , and consequently, from the proof obligation,

the above triple satisfies T ′(scN). Since this latter formula does not contain
any variable of the form vtmp, we finally have (αN , ω′

N2
) |= T ′(scN), as desired

since ωN = ωN2
. ⊓⊔

As a consequence, N can be labelled NS as soon as both N1 and N2 are,
as said in Section 4.

Obviously, the reasoning is similar to that for leaf nodes concerning GPFs
instead of satisfaction conditions. However, preservation of invariant and stable
properties does not have to be verified here, since it can be inferred from
preservation at leaf nodes (Propositions 5 and 6).

5.4 Proof schemas for Iter

In this section, let N be a node with OpN = Iter and ChildrenN = (N1).
Clearly, the main role of the proof schema here is to ensure termination, since

26

success is guaranteed by the operational semantics of Iter, which merely say
“try again until you succeed”.

As is quite standard, so as to prove termination a variant is needed. In
a general setting, a variant is a variable whose value decreases at each itera-
tion of a loop and whose domain is a well-founded structure (i.e., a structure
admitting no infinite decreasing sequence). As a consequence, the loop neces-
sarily terminates. Observe that the variant needs not be part of the variables
resulting from modelling the environment or from agentifying the problem.
It can be added as a variable during the proof process. Nevertheless, so that
its value is guaranteedly affected by the agent only, we require that it is an
internal variable of the agent. We also restrict the definition of a well-founded
structure a little, by requiring that all decreasing sequence have the same lower
bound.

Definition 14 (variant) Let N be a node with OpN = Iter in the GDT
of an agent A. Then a variant for N is a tuple (v, <v, v0), where v ∈ Vi(A)
and <v is a total order on the values taken by v, such that every decreasing
sequence of these values is lower-bounded by the value v0.

Like for SeqAnd, the proof schema for Iter (NL case) considers the ex-
ecution of N at three distinct worlds: The initial one, the final one, and an
intermediate one which corresponds to the last time when execution of N1

starts. We nevertheless have to consider several cases, depending on whether
we consider the first iteration and whether the last execution of N1 is suc-
cessful. In particular, when we consider iterations other than the first one,
we know that N has just failed (otherwise the operational semantics of Iter
require the iteration to stop).

Thus, first of all, in all cases we know that the following hypotheses hold:

HNL = iE ∧
∧

sE∈SE

(sE → At ′(sE)) ∧ iA ∧
∧

sA∈SA

(sA → At ′(sA)) ∧ cN

Now when considering the first iteration, the following hypothesis holds, the
precise disjunct depending on whether this first execution of N1 has succeeded
or failed:

H1 = (T ′(scN1
))ri ∨ (T ′(gpf N1

))ri

Right projection is used because according to Rule (I.2), N ends at the instant
after N1 ends. Finally, when considering the other iterations, the following
hypothesis holds, the precise disjunct depending on whether the last iteration
of N1 has succeeded or not. Indeed, let the intermediate world represent the
instant when this last iteration has begun. Then since iteration went on, we
know that the parent goal was not satisfied at this world.

H2 = T tmp(¬scN) ∧ ((T ′
tmp(scN1

))ri ∨ (T ′
tmp(gpf N1

))ri)

Then the proof schema is as follows (NL case). We first have to prove that
when the variant reaches its lower bound, then the root goal is satisfied. This

27

guarantees that the iteration has succeeded if the subnode cannot be iterated
further (because this would make the variant decrease lower than v0). Observe
that the iteration could also succeed earlier. Then we have to prove that the
variant decreases at each iteration (may the subnode succeed or not). This
guarantees that it will eventually reach its lower bound and thus that the
iteration will stop (because of the first proof obligation).

HNL ∧ (H1 ∨ H2) ∧ (v′ = v0) |= T ′(scN) (11)

HNL ∧ H1 ∧ (v′ 6= v0) |= v′ <v v (12)

HNL ∧ H2 ∧ (v′ 6= v0) |= v′ <v vtmp (13)

Example 21 (proof for Iter) Consider again Example 11. For the sake of this
example, assume moreover that the root node reach is NL, with context
creach = (x 6= xt) ∨ (y 6= yt), and that xt and yt are constant. Finally, as-
sume that all invariants are true and that there are no stable properties.

We write d(pos′, post) as a shorthand for d((x′, y′), (xt, yt)) and |pos′−post|
as a shorthand for |x′ − xt| + |y′ − yt|, and similarly for pos, postmp. Then a
convenient variant for the root node reach is the value v = |pos − post|, with
<variant being the natural order on integers and v0 = 0.

Recall that Node move is NS, thus gpf move =⊥). Then we have:

HNL = (x 6= xt) ∨ (y 6= yt)

H1 = d(pos′, post) < d(pos, post)

H2 = ((xtmp 6= xt) ∨ (ytmp 6= yt)) ∧ d(pos′, post) < d(postmp, post)

We get the following proof obligations:

HNL ∧ (H1 ∨ H2) ∧ (|pos′ − post| = 0) |= (x = xt) ∧ (y = yt)

HNL ∧ H1 ∧ (|pos′ − post| 6= 0) |= |pos′ − post| <v |pos − post|
HNL ∧ H2 ∧ (|pos′ − post| 6= 0) |= |pos′ − post| <v |postmp − post|

Observe that these proof obligations can be verified only depending on the
definition of the distance function d.

Recall that N has to be NS, so GPFs are not relevant. For more details we
refer the reader to the companion paper.

5.5 Proof schemas for lazy nodes

In this section, let N with lzN = L. We write NNL for the node equal to N
except for lzN = NL. Recall that the satisfaction condition of a lazy goal is a
formula in L (that is, with no primed variable).

From the schemas given above, one can get the proof obligations for NNL,
provided a context cNL

N is given. We claim that ¬scN ∧ (cN)i, that is, the
nonsatisfaction of N together with the projection of its context onto internal
variables, is a convenient context. By that, we mean that if the obligations for

28

NNL, as generated with ¬scN ∧ (cN)i as cNL
N , are proven, then executing N

indeed establishes scN in case of success.
The intuition is simply that when executing a lazy node, if the satisfaction

condition does not initially hold, then execution is exactly as in the nonlazy
case, but it starts one instant later. Thus the (initial) context maybe is not
true anymore as concerns environment variables (see the example of lighting
a candle up with a match in Example 9).

The case of GPFs is a bit more involved. Indeed, contrary to satisfaction
conditions, the GPF of a lazy node may be a formula in L′, that is, relate
the initial instant of the execution to the final one. Now consider N and its
nonlazy counterpart NNL, as above. The proof obligations for GPFs will show
that the GPF of N is established starting from the initial instant for NNL, but
we want it established relative to the initial instant for N . Thus we have to
show the proof obligations for NNL as above, but we moreover have to show
that (gpf N)ℓi is enough for establishing gpf N .

Proposition 9 (proof schemas for lazy nodes) Let N be a lazy node, and
let NNL be the same node except for lzNNL = NL. Define cNL

N to be ¬scN ∧
(cN)i. Then if all proof obligations generated for NNL with this context, and the
additional obligation (T ′(gpf N))ℓi |= T ′(gpf N), are proven, N terminates and
succeeds (resp. establishes its GPF) when its satisfaction condition is initially
true or the corresponding execution of NNL terminates and succeeds (resp.
establishes it GPF).

Observe that in case GPFs are automatically inferred, the proposition can
be used to infer (T ′(gpf N))ℓi for N , where gpf N is inferred as if N were
nonlazy.

Example 22 (proof schemas for lazy nodes) As concerns lazy leaf nodes, the
proof obligations become the following.

iE ∧ iA ∧ ¬scN ∧ (cN)i |= prea

iE ∧ iA ∧ ¬scN ∧ (cN)i ∧ T ′(posta) |= T ′(scN)

iE ∧ iA ∧ ¬scN ∧ (cN)i ∧ T ′(gpf a) |= T ′(gpf N)

(T ′(gpf a))ℓi |= T ′(gpf a)

To conclude, as concerns preservation of invariant and stable properties by
leaf nodes, the proof schemas are the same as those given in Section 5.2, but
with Helem = iE ∧ iA ∧ ¬scN ∧ (cN)i ∧ (T ′(posta) ∨ T ′(gpf a)).

6 Implementation of behaviours

In this section, we describe how the behaviour of an agent, as specified by
a GDT, can be automatically implemented. The implementation is as an au-
tomaton, which can be easily generated in (or translated into) any programing
language of interest.

29

The semantics of this implementation is that executing the automaton
generated is (provably) the same as executing the behaviour specified by the
GDT, as defined by the operational semantics. The automaton are anyway
essentially a translation of this operational semantics, though there are some
subtleties for the implementation of, e.g., synchronization.

Importantly, executing the automaton is the same as executing the GDT,
even if the proof obligations generated from the latter have not been verified.
As a consequence, techniques alternative to theorem proving can be used for
verifiyng the correctness of the behaviour specified, like first generating the
automaton and then model-checking it (the only problem might be unverified
termination for operators like Iter).

6.1 Behaviour automata

We propose an implementation of GDTs by behaviour automata. Such au-
tomata are an adaptation of string-to-string automata. The automaton im-
plementing a node N in a GDT is essentially obtained from automata imple-
menting the children of N , combined according to the decomposition operator
of N and modified according to its laziness and necessary satisfiability. The
behaviour automaton for a GDT is that for its root node.

A behaviour automaton for a node N essentially works as follows. First
of all, it receives signals of the form initN from an automaton for the par-
ent of N in the GDT. It also receives signals of the form satNi

or nonsatNi

from each of its children Ni. Such receptions are modelled as symbols read
by the automaton, thus labelling its transitions. Other symbols which can be
read by an automaton are its own satisfaction condition (scN or ¬scN), and
symbols specific to each operator, like conditions for a Case(Cond1,Cond2)
decomposition.

Dually, a behaviour automaton for N sends signals to its parent and chil-
dren nodes (satN/nonsatN and initNi

, respectively). Finally, it prescribes the
execution of actions. Signals sent and actions executed are modelled by sym-
bols written by the automaton3. Other symbols model the action of saving the
value of variables so as to be able to evaluate the satisfaction condition of the
node later on, and locking/unlocking environment variables for synchronized
operators.

Clearly, the implementation or translation of such an automaton in a pro-
graming language is straightforward (provided, obviously, that the implemen-
tation of actions is).

Definition 15 (behaviour automaton) Let T be a GDT for an agent
A, and let N be a node in T . A behaviour automaton for N is a tuple
(Q, Σ, Γ, q0, δ), where:

3 In a previous work [SF06], we represented the different actions as performed inside the
states of the automaton. Here, like in the model of Mealy transducers [HU79], we have chosen
to represent them on transitions. However, the difference between the two representations
is only technical.

30

q±

q−

q+

initR/saveRmoveRight

scR/satR

¬scR/nonsatR

q0

Fig. 3 Automaton for moving by one position to the right (Example 23)

– Q is a set of states, including two special states written q+ and q−,
– Σ is an input alphabet, including initN , scN , ¬scN , as well as satNi

and
nonsatNi

for all nodes Ni ∈ ChildrenN ,
– Γ is an output alphabet, including satN and nonsatN , initNi

for all nodes
Ni ∈ ChildrenN , namea for all actions a ∈ ActionsA, as well as saveN and
lockV , unlockV for all sets of variables V ⊆ VE ,

– q0 ∈ Q is an initial state,
– δ ⊆ Q × Σ × (Γ ∪ {ε}) ∗ ×Q is the transition relation.

There can be only one transition from q0, on reading initN . Dually, the last
symbol written on transiting to q+ (resp. q−) is restricted to be satN (resp.
nonsatN).

Example 23 (behaviour automaton) Consider again Example 12, and the node
R corresponding to the goal of moving by one position to the right (which
fails if the agent is already at the rightmost position). Let scR be (x′ = x− 1)
and gpf R be (x′ = x). Finally, let moveRight be the action of moving by one
position to the right.

The behaviour automaton for Node R is depicted on Figure 3. The au-
tomaton is initially in state q0. When execution comes to Node R, the signal
initR is received (from the parent node). Then the agent saves the value of all
relevant variables (here that of x) and performs the action moveRight. This
leads it to state q±. Then the agent evaluates scR, that is, decides whether the
current value of x equal the one saved minus 1. If yes, then atom scR is true
and the automaton moves to state q+, sending the signal satR (to its parent
node). Otherwise, atom scR is false (symbol ¬scR is read) and the automaton
moves to state q−, sending the signal nonsatR (to its parent node).

Remark that behaviour automata give an implementation of the behaviour
of an agent, but do not claim to define all elements of this behaviour. For
instance, they do not specify how messages are waited for, how locking of
variables is achieved, etc. Note however that this can be specified by the im-
plementation of specific actions available to the agent.

Moreover, for specific purposes (in particular, new decomposition opera-
tors), new symbols can be added to the input or ouput alphabets. For instance,

31

initN /aN satN

q+q0

(a) NL and NS node

q?

q± q−

q+

(b) L and NNS node

scN/satN

¬scN /aN

¬scN /nonsatN

q0

scN /satN

initN /saveN

Fig. 4 Behaviour automata for leaf nodes

the nondeterministic choice of the first child to be executed in an Or decom-
position can be modelled by an input signal.

6.2 Automata for leaf nodes

Recall that a leaf node N is a tuple (nameN , aN , scN , gpf N , lzN ,nsatN). To
such a node a behaviour automaton is associated, depending on its laziness
and necessary satisfiability.

The simplest case is that of an NL and NS node. The corresponding au-
tomaton only prescribes, on receiving the initN signal, to save the values of
variables and execute the action, and then send the satN signal. The other
cases (L and/or NNS leaf nodes) are a bit more complex, and can be derived
from the former by using the L and NNS patterns (see Section 6.4).

All four combinations give rise to a behaviour automaton. The simplest
and the most complex ones are shown on Figure 4. Each transition is labelled
with the symbol σ read and the string γ written in the form σ/γ. We formally
define only the NL and NS case, since the other cases can be derived with
patterns.

Definition 16 (automaton for leaf node) Let N be a leaf node in a GDT
with lzN = NL and nsatN = NS . The behaviour automaton for N is the
behaviour automaton with Q = {q0, q+} and δ = {(q0, initN , aNsatN , q+)}.

6.3 Composition patterns for internal nodes

The automaton for a node is built from automata for its children in the GDT.
This is done using composition patterns, that is, patterns describing how the
children automata are combined according to the decomposition operator. As
for leaf nodes, L nodes are built using patterns, so we describe the case when
the parent node is NL.

We first consider the case of a node N with decomposition operator OpN =
SeqAnd, and we write ChildrenN = (N1, N2). As the operational semantics
states (Rule (SA.5)), when execution of N begins, then simultaneously does

32

q0
i

σp
i /nonsatNi

σq
i /nonsatNi

q+
i

q−i

Qi

σ1
i /satNi

initNi
/γ

init
i σℓ

i /satNi

Fig. 5 General notation for the automaton of Ni

σ1
1
/ε

Q1 qm
ε/γ

init
2

σ1
2
/satN

q±
σp
1
/ε

σq
1
/ε

σp
2
/ε

σℓ
2
/satN

Q2

σℓ
1
/ε

q+

¬scN /nonsatN

σq
2
/ε scN /satN

q−

q0
initN/saveN γ

init
1

Fig. 6 Composition pattern for SeqAnd (NL)

execution of N1. Thus the composition pattern prescribes to identify the initial
state of the automaton for N to that of the automaton for N1. On reception
of signal initN , the automaton for N is defined to behave exactly as that for
N1 on reception of initN1

.
Dually, when execution of N1 ends, two cases are to consider. If this exe-

cution is successful, then the automaton for N1 is in state q+. As prescribed
by Rule (SA.1), we identify this state with the initial one for the automaton
of N2 (and the state is not a “q+” state for N). On the contrary, if execution
of N1 fails, then as prescribed by Rule (SA.2) we replace the “q−” state of
N2 with an intermediate state q± to which we attach an NNS pattern (see
Section 6.4).

Finally, the final states q+ and q− of the automaton for N2 are identified
with the q+ state of the automaton for N and with the q± state above, re-
spectively. In the end, assume the automata for N1 and N2 are as on Figure 5.
Then for N , we get the pattern given on Figure 6 and formally defined as
follows.

Definition 17 (pattern for SeqAnd) Let N be a node with OpN = SeqAnd,
lzN = NL, and ChildrenN = (N1, N2). Write Qi for the set of states of the
behaviour automaton for Ni, and similarly for q0

i , q+
i , etc. Then the behaviour

automaton for N is built as follows. The set of states Q is defined to be
(Q1 \ {q0

1 , q
+
1 , q−1 }) ∪ (Q2 \ {q0

2, q
+
2 , q−2 }) ∪ {q0, qm, q+, q−, q±}. The transition

relation δ contains the following transitions:

(q0, initN , saveNγ
init
1 , q1) where (q0

1 , initN1
, γinit

1 , q1) ∈ δ1

33

Q1

σ1
1/ε

σp
1
/ε

σq
1
/ε

q±
q+

σℓ
1/ε scN /satN

¬scN /γ
init
1

q0
initN /saveN γ

init
1

Fig. 7 Composition pattern for Iter (NL)

(q1, σ
i
1, ε, q

±) for all (q1, σ
i
1,nonsatN1

, q−1) ∈ δ1

(q1, σ
i
1, ε, q

m) for all (q1, σ
i
1, satN1

, q+
1) ∈ δ1

(qm, ε, γinit
2 , q2) where (q0

2 , initN2
, γinit

2 , q2) ∈ δ2

(q2, σ
i
2, satN , q+) for all (q2, σ

i
2, satN2

, q+
2) ∈ δ2

(q2, σ
i
2, ε, q

±) for all (q2, σ
i
2,nonsatN2

, q−2) ∈ δ2

(q±, scN , satN , q+)

(q±,¬scN ,nonsatN , q−)

(q1, σ1, γ1, q
′
1) for all (q1, σ1, γ1, q

′
1) ∈ δ1, q1, q

′
1 6= q0

1 , q+
1 , q−1

(q2, σ2, γ2, q
′
2) for all (q2, σ2, γ2, q

′
2) ∈ δ2, q2, q

′
2 6= q0

2 , q+
2 , q−2

The fact that this pattern is correct follows straightforwardly from the fact
that it is built according to the rules which define the operational semantics
of SeqAnd.

The pattern for Iter decompositions follows the same lines. We do not
detail it here, and only give it on Figure 7. Observe that nodes with operator
Iter can always be labelled NS, thus there is no (reachable) “q−” state in the
resulting automaton.

6.4 Patterns for L and NNS nodes

When a node N is lazy, the behaviour automaton for N can be built as in the
NL case, using an additional modification with a specific pattern.

This pattern implements the operational semantics for L nodes. The for-
mer (NL) initial state is replaced with one corresponding to the test of the
satisfaction condition (denoted by q?). If the satisfaction condition is true,
then transition takes place directly to q+, and otherwise the transition is the
initial one from the nonlazy automaton. The new initial state has a single
transition to q?. Moreover, observe that no saving of values is needed, since
the satisfaction condition has to be a formula in L (that is, a nonprimed one),
and thus it can be evaluated with the current values of variables only.

The pattern is depicted on Figure 8 (with the notation of Definition 18).

34

q?q0

scN /satN

initN /ε ¬scN/γ
init
NL

σp
NL

/nonsatN

q+
NL

q−NL

σq
NL

/nonsatN

σ1
NL/satN

σℓ
NL/satN

QNL

Fig. 8 Patterns for L nodes

Definition 18 (lazy pattern) Let N be a lazy node, and let NNL be the
node equal to N except for lzNNL

= NL. Write QNL for the set of states of
the behaviour automaton for NNL, and similarly for its other components.
Then the behaviour automaton for N is built as follows. The set of states Q
is defined to be (QNL \ {q0

NL}) ∪ {q0, q?}, states q+ and q− are defined to be
q+
NL and q−NL, respectively, and the transition relation δ contains the following

transitions:

(q0, initN , ε, q?)

(q?, scN , satN , q+)

(q?,¬scN , γinit
NL , qNL) where (q0

NL, initNNL
, γinit

NL , qNL) ∈ δNL

(qNL, σNL, γNL, q′NL) for all (qNL, σNL, γNL, q′NL) ∈ δNL, qNL ∈ QNL \ {q0
NL}

Similarly, the automata for NNS nodes can be derived from those for NS
nodes. The pattern is used for composition patterns (see Section 6.3), but it
can also be used for making any NS node deliberately NNS.

The need for a specific pattern, as opposed to simply reachability of state
q−, comes from the fact that a node whose decomposition fails may neverthe-
less succeed, due to other conditions like evolution of environment variables.
As already discussed in Section 4.4, this is reflected by, e.g., Rules (SA.2)
and (SA.4), according to which the endN signal is sent only at the instant
after the decomposition fails.

The NNS pattern thus replaces state q− of the automaton by an inter-
mediate state q±, which corresponds to the test of the satisfaction condition.
Naturally, there are two transitions from this state, one to q+

NS and one to (the
new) q−. The pattern is depicted on Figure 9 (with obvious notation).

7 Further types of nodes

In this section, we present two natural extensions of the method as presented
in Sections 4 to 6. These extensions allow to take into account types of nodes
different than nodes associated with a decomposition or an action.

35

q+
NS

q0
NS

q±

initN/γ
init
NS

q−
σq
NS

/ε ¬scN /nonsatN

scN/satN

σp
NS

/ε
QNS

σ1
NS/satN

σℓ
NS/satN

Fig. 9 Patterns for NNS nodes

7.1 Parameterized GDTs

Quite naturally, when specifying behaviours with GDTs, there is the need for
using the same part of a tree several times. For instance, if the agent models
a mobile robot, then it is quite likely that its behaviour will consists in going
from one place to another at different moments and in different contexts. It
is then quite natural to use the same GDT for achieving this goal, without
reverifying its correctness.

As specified by the general operational semantics of GDTs (see Section 4.3),
several nodes cannot share a child, for this would result in a DAG instead of a
tree (thus preventing, e.g., from efficiently propagating contexts and GPFs).
Moreover, it can be the case that the designer wants to reuse the same subGDT
in different GDTs for agents of the same kind.

For these reasons, we described here how a (sub)GDT can be used in
different contexts. The idea is to consider a so-called parameterized GDT which
is verified once and for all, independently of the GDT in which it is used, and
then to use instances of this pattern with the only requirement to verify that
the usage is correct. Thus a paremeterized GDT is much like an action coming
with a proof that it achieves the claimed goal (postcondition) in a given context
(precondition).

The technical definition is as follows. A parameterized GDT is exactly like
a GDT, except that its variables are not instantiated; they are just place-
holders, some for internal variables of the agent using the GDT and some for
environment variables. The GDT is defined relative to a set of actions which
are used at the leaf nodes.

Definition 19 (parameterized GDT) Let Actions be a set of actions. A
parameterized GDT is a 5-tuple T = (PP ,RootT , cT , iP , SP) where PP is a
set of variables, RootT is the root node of a GDT over variables PP and using
only actions from Actions , cT , iP are formulas in LP P , and SP is a finite set
of formulas in LP P . Moreover, PP is partitioned into PP

i ∪ PP
E

.4

Observe that in particular, RootT defines a satisfaction condition scT , a
necessary satisfiability nsatT and, if needed, a GPF gpf T for T .

4 An invariant over placeholders for internal variables and one over placeholders for envi-
ronment variables could be defined instead of only one, and similarly for stable properties,
but we chose to keep the presentation simple here.

36

A parameterized GDT comes with all the necessary information for veri-
fying that it is correct. Namely, proof obligations can be generated treating
the variables in PP

i as being internal variables (of some imaginary agent) and
variables in PP

E
as being environment variables. The context of the root node

as well as invariants and stable properties used in proof schemas are those
coming with the paramaterized GDT. If all proof obligations generated are
verified, then the parameterized GDT itself will be called verified.

Intuitively, if a parameterized GDT is verified, this means that it will
achieve the claimed satisfaction condition or GPF each time it is used in a
GDT with the variables in PP

i (resp. PP
E

) replaced (instantiated) by internal
(resp. environment) variables, and the context, invariant and stable properties
are respected.

Definition 20 (use of a parameterized GDT) Let A be an agent in an
environment E . A use of a parameterized GDT T = (PP ,RootT , cT , iP , SP) is
a node N in T of the form

(nameN , T, IP P
i

, IP P
E

, scN , gpf N , lzN ,nsatN)

where nameN , scN , gpf N , lzN ,nsatN are as in Definition 6, IP P
i

is a mapping

from PP
i to the set of internal variables Vi(A) of A, and IP P

E

is a mapping

from PP
E

to VE(A).5

We finally give proof schemas for uses of paramterized GDTs. These schemas
are similar to those for leaf nodes (see Section 5.2), but one also has to check
preservation of the invariants and stable properties of the agent and of the pa-
rameterized GDT. Then the intuition is that if the corresponding obligations
are verified, then the parameterized GDT is correctly used.

So as to simplify notation, we write, e.g., cT , but this denotes the formula
obtained from cT by replacing every parameter in PP with its image under
IP P

i
or IP P

E

. Moreover, so as to keep the presentation simple, we do not give
the obligations referring to invariant and stable properties.

iE ∧ iA ∧ cN |= cT (14)

iE ∧ iA ∧ cN ∧ T ′(scRootT
) |= T ′(scN) (15)

iE ∧ iA ∧ cN ∧ T ′(gpf RootT
) |= T ′(gpf N) (16)

Proposition 10 (use of PGDTs) Let N be a use of a parameterized GDT
T . Assume moreover that T is verified, and lzN = NL. Then if obligations 14–
16 are proven and all invariants and stable properties are correctly preserved,
execution of N terminates (resp. succeeds, fails) as soon as the corresponding
execution of T does.

As a consequence, N can be labelled NS as soon as RootT is NS. The lazy
case is handled as in Section 5.5.

5 Note that, since assumptions over environment variables are less restrictive than over
internal ones, a placeholder for an environment variable could also be instanciated with an
internal one.

37

7.2 External goals

In a multi-agent setting, one can distinguish two types of interaction between
agent. The first one is implicit, through modification of the environment, which
we model by unpredictible evolution of environment variables as seen by an
agent. Interactions of the second type are explicit, for instance, agent helping
each other to achieve part of their goals.

External goals are a first step towards handling this second kind of inter-
action when designing an agent. We do not claim to handle such interactions
exhaustively, but we present some preliminary work towards representing and
verifying them.

An external goal N in the GDT of an agent A is one which A cannot
achieve, for instance because it depends on variables that it does not control.
Thus a satisfaction condition is associated to N , but instead of an action or
decomposition, other agents are expected to establish it true.

Thus external goals are a way to express dependences between (collab-
orative) agents. They can be seen as a specialization of TAEMS “nonlocal
tasks” [VHL01]. Observe however that there is no contracting with our no-
tion. As a special case, an external goal as the first operand of a SeqAnd
decomposition can be seen as a specification of an “enables” interrelationship
in TAEMS. For a more detailed comparison with TAEMS, we refer the reader
to [SMF06].

In this preliminary report, we make the following simplifying assumptions:

– exactly one goal N of one agent is specified as the one satisfying N for A,
– N is necessarily satisfiable,
– there are no cyclic dependencies between agents (where A is said to depend

on AE if A has an external goal satisfied by a goal of AE).

Moreover, implicitly we assume that all agents have a behaviour specified by a
GDT, and that this behaviour is known when external goals are specified (see
Definition 5). This makes sense when the whole MAS is designed at a time,
but clearly leaves space for further improvements.

Then an external goal is defined as follows. The notion is similar to that of
a leaf node, but another goal of another agent, instead of an action, is attached.

Definition 21 (external goal) Let A be an agent in an environment E . An
external goal in the GDT T of A is a node N in T of the form

(nameN , AE , NE , scN , lzN)

where nameN , scN , lzN are as in Definition 6, AE is another agent in E , and
NE is an NS node in the GDT of AE .

Example 24 (external goal) Let us consider two agents in a university where
classrooms are locked for security reasons. The first agent, the teacher, has
a course to provide in a classroom. The second agent is the mace bearer: it
has a pass key to open classrooms. Then a subgoal of the teacher agent is

38

to enter into the right classroom. This subgoal is decomposed thanks to a
SeqAnd operator into two subgoals: Unlocking the door, then opening it. So,
the first subgoal is an external goal that will be achieved by the mace bearer,
the second agent.

Even with our simplifying assumptions, external goals make the proof pro-
cess much more complex. So as to prove that executing an external goal N
will indeed establish it satisfaction condition, one has to prove as usual that
execution terminates and succeeds.

In case execution terminates, we propose the following proof schema for
the verification whether the satisfaction condition of N is established (in the
nonlazy case, referring to Section 5.5 for the lazy case). Recall that the goal
of AE is assumed to be necessarily satisfiable.

iE ∧ iA ∧ iAE ∧ cN ∧ T ′
tmp(scNE) |= T ′(scN) (17)

Importantly, observe that the starting instant for execution of NE is not the
same as that for N , as reflected by the “tmp” instant in the obligation.6

Now as concerns termination, we propose to prove that whenever execu-
tion of N starts, at whatever point in its GDT AE is, AE will eventually
reach NE . Clearly, this is sufficient (but not necessary) for establishing that
A does not wait forever, provided that AE is already executing its GDT (see
Proposition 12).

We first define, given a node N0 in the GDT of an agent A, what other
nodes in its GDT execution is guaranteed to eventually reach starting from
execution of N0 (provided the GDT is verified, and in particular that execution
of all nodes in between terminates). We will then require to show that NE is
such a node for AE , starting from whatever N0 in its GDT (the one AE is
executing when A comes to its external goal N).

Note that our characterization is syntactic (and thus, easy to compute)
but only partial.

Definition 22 (eventually reached) Let T be a GDT for an agent A, and
let N0 be a node in T . The nodes eventually reached from N0 in T are N0 and
all nodes obtained by recursive application of the following rules, where N is
required to be NL and eventually reached in all cases:

– if OpN is one of {SeqAnd, SeqOr, SyncSeqAnd(·), SyncSeqOr(·)} and ChildrenN =
(N1, N2), then N1 is eventually reached from N ,

– if OpN is Iter and ChildrenN = (N1), then N1 is eventually reached from
N ,

– if OpN is either SeqAnd or SyncSeqAnd(·), ChildrenN = (N1, N2) and
nsatN1

= NS , then N2 is eventually reached from N .

The following proposition is quite straightforward given the operational
semantics of operators.

6 Equivalently, we could consider only the projection of T’(scNE) onto the right.

39

Proposition 11 (eventually reached) Let T be a verified GDT for an agent
A, and let N0, N be two nodes in T such that N is eventually reached from N0.
Then for all world ω in the trace of agent AE, if ω |= initN0

, then ω |= ⋄initN .

We finally get the following proof schema :

∀NE
0 ∈ T E, NE is eventually reached from NE

0 (18)

So as to get rid of the case when AE is not executing its GDT, one can simply
prove that this cannot occur, that is, that its precondition and triggering
context are always true. Clearly, this is stronger than needed, but guarantees
the correctness of the proof. Moreover, if one can prove by any means that
AE is executing its GDT when A comes to its external goal, then this is also
sufficient for the proof to be correct. For formal details see Proposition 12.

Proposition 12 (external goals) Let a MAS containing agents A1, . . . , An.
If the three following conditions are verified:

– there are no cyclic dependencies between the agents;
– each agent AE

i supposed to help another agent Aj to satisfy one of its
external goals is always executing its GDT;

– obligations 17 and 18 are proven for each relevant external goal of each
agent.

Then the external goals of each agent always terminate and succeed.

8 Related work

In this section, we survey work related to ours. We first review work in formal
verification (but not necessarily concerned with agents and MASs) and in MAS
design (but not necessarily concerned with validation). We then compare our
model to the closest ones in the literature, namely models for MAS design
which integrate a test or proof system.

Note that we do not propose a classification of the methods described, but
that we simply analyze them under points of view relevant to the comparison.

8.1 General-purpose verification methods

Methods for validating software have been extensively studied mainly for crit-
ical systems, that is, application fields where security is necessary (e.g., in
the transportation domain). Two main methods exist: Test and proof. Since
our model is oriented towards theorem-proving, we will not discuss (general-
purpose) test methods here.

Methods and models for proof rely on a formal specification written in a
formal language. Moreover, most methods are supported by tools allowing to
perform the proofs themselves.

40

Numerous such methods have been proposed, but they can be grouped
into a limited number of categories: Abstract Data Types [GH78], Process
Algebras (LOTOS [FL94], π-calculus [MPW92]), Dynamic Distributed models
(Unity [CM88], Back’s Action Systems [Bac93]), and Model-Oriented methods
(Z [Spi87],VDM [Jon90], B [Abr96], TLA+ [Lam96]).

However, all these methods are too general to be directly used for specifying
and verifying MASs, which are massively distributed and dynamic systems.

8.2 Models and methods dedicated to MASs

The first aim of models for agents and MASs was to help developers to design
MASs. The most famous one is certainly the BDI model [RG95], though there
are numerous other ones [SDB02].

The BDI architecture has become a standard model, and most recent works
on multiagent models are based on it. For instance, the BOID architecture
adds the notion of obligation to the belief, desire and intention notions of BDI
agents [BDH+01]. However, the BDI architecture and its extensions lack a
strong structuration and a method.

Two early formal methods dedicated to MASs are MetateM [Fis94] and
Desire [BvET97]. Nevertheless, neither allows to specify properties that the
system must guarantee.

On the contrary, methods relying on the role notion introduce an ab-
stract notion that helps to perform the requirements engineering task. This
kind of methods allows to reason at first at the system level, and not di-
rectly at the agent level. For instance, Wooldridge et al. developed the Gäıa
method [WJK00]. In Gäıa, a MAS is specified twice: in terms of its behaviour
(through liveness properties) and in terms of its invariant properties. Thus
the bases for proving MASs are parts of this method. Neverthess, using di-
rectly Gäıa to prove MASs or agent behaviours is not possible, in particular
because properties are assigned to roles, not to agents, and the method does
not provide any formal semantics to role composition. So, adding a role proof
mechanism to Gäıa could be easily performed, but it would not provide an
agent verification mechanism 7.

Another family of methods, closest to ours, is the family of goal-oriented
methods. Most of these methods are at the agent level rather than at the
system level, and so the agentification task must be performed first 8. Never-
theless, two exceptions can be found: Moise [HSB02] and PASSI [CP02]. For
instance, with PASSI, agent types are produced by grouping use cases iden-
tified during the analysis step. There are however no guidelines for grouping
use cases not associating them to agents.

Now among the goal-oriented methods at the agent level, we can distin-
guish declarative and procedural models. Methods with a declarative model

7 For these reasons, the method is essentially dedicated, as their authors claim, to systems
with “a one-to-one mapping between roles and agents types”.

8 This is also the case of our approach.

41

allow to formally specify goals and to reason about them. This is mainly the
case of the Goal method [dBHvdHM00] or of the work by van Riemsdijk et
al. [vRDDM04]. An advantage of such models is that they often introduce the
notion of a goal decomposition into subgoals, allowing a top-down, progres-
sive specification mechanism. Among all these methods, TAEMS [VHL01] uses
the task and subtask notions (similar to our goals and subgoals) to simulate
MASs and to check at runtime if an implementation satisfies a theoretic model
of tasks dependencies. We refer the reader to [SMF06] for more details.

Procedural models aim at producing agent descriptions which are easier to
implement. For that reason, most procedural models for MASs are associated
to languages dedicated to agent programming, such as 3APL [DdBDM03] and
AgentSpeak [Rao96]. These languages give a formal model of the behaviour
of the system, making a proof theoretically possible, since it is possible to
directly prove the correctness of programs. However, there are three limits
to such approaches. First of all, proving a program is much more difficult
than proving a specification. Then, proving a programimplies means than the
program has already been developed, and thus the verification step occurs
very late in the design process. Finally, in a language such as AgentSpeak, an
important part of the agent behaviour is not directly expressed in AgentSpeak.
Thus it is impossible to perform complete proofs.

To overcome some of these limits, Winikoff et al. [WPHT03] propose a goal
model allowing to express both declarative and procedural views of goals: The
declarative view is specified by a satisfaction and a failure condition for each
goal, and the procedural view is given by a plan. However, the semantics of
actions is not specified, which weakens the expressiveness of the procedural
view.

For more details about the numerous models and methods for MAS devel-
opment, we refer the reader to [JSW98,IGG99,SDB02,DW03].

8.3 Comparison with the closest approaches

As evoked in Section 8.1, there are essentially two ways to prove the correctness
of a specification, namely model checking and theorem proving.

Recently there have been many works on model-checking agents (see for in-
stance [BFVW03,BFPW03,ALW04,RL04,KLP04,KP04]. However, all these
works share the same limit: The complexity is reduced, but is still here, mak-
ing verification of very complex systems difficult if not unfeasible. Among these
works, the one by Alechina et al. [ALW04] is interesting because it allows to
take time explicitly into account in the proof. However, proofs are limited
to propositional logic. Similarly, Raimondi and Lomuscio [RL04] clearly ex-
plain the difficulties of theorem proving and the advantage of using Binary
Decision Diagrams, but the logical world which they propose is rather lim-
ited (more limited than Linear Temporal Logic, which, they claim, is not rich
enough). Finally, Kacprzak and Penczek [KP04] propose an interesting un-
bounded model checking method for alternating-time temporal logic, an exten-

42

sion of the branching time logic CTL where operations can be parameterised
by sets of agents. However, once again, proofs are limited to propositional
logic.

As opposed to model checking, there are not a lot of works which deal
with using theorem proving for verifying MASs, as we propose to do. The
main reason for that is that theorem provers cannot perform all the proofs of
a system whose properties are expressed with predicates (essentially because
first-order logic is undecidable). However, many theorem provers can now prove
very complex systems automatically, like PVS [OSR92] or krt (the prover of
the atelier B) [Abr96]. These provers can also use model checking when useful.

A recent and very interesting work is the one by Bracciali et al. [BED+06]
about PROSOCS agents. A detailed comparison of our work with PROSOCS
can be found in [MSSZ07]. The main drawback of PROSOCS is that it relies
on propositional logic.

Other models exist, in particular relying on logic programming. Actu-
ally, these models look well suited to perform verification by theorem prov-
ing. Among them, one can find CaseLP [MMZ97] and DCaseLP [BBG+05].
However, proofs are absent from the CaseLP model. Since the extension to
DCaseLP presented in [BBG+05], proofs have been integrated, but they only
verify the implementation of interaction protocols.

Congolog [GLL00] and CASL [SLL02] are also two interesting languages,
relying on the situation calculus. Moreover, they both allow to perform proofs.
However, these proofs only concern the sequence of actions, not their seman-
tics.

The Goal method [dBHvdHM00] allows to formally define goals of an agent.
Goals are described in propositional logic, limiting the expressiveness of the
language, in comparison with systems allowing a specification in predicate
logic. The method also defines a proof mechanism allowing to prove temporal
properties expressed in a Unity-like language [CM88]. However, the essential
temporal property which allows to express the liveness of a program, namely
leads − to, cannot be verified by the proof system. This strongly limits the
usage of the method. Moreover, the weak fairness assumption made by Goal on
the action selection of each agent also makes the MAS difficult to implement.

To conclude, Dastani et al. have proposed the 2APL language [Das08].
Though there are some similarities with our approach, like a formal transition-
system semantics, a multi-agent model, and the notion of a dynamic environ-
ment, their approach does not embed a proof system. Moreover, 2APL is not
compositional, which makes the system more monolithic from the validation
point of view. On the other hand, 2APL allows to formalize communication
actions, which we cannot do so far with GDTs.

9 Discussion and future work

We have presented the model of goal decomposition trees, which allows to
specify the behaviour of agents in an intuitive, goal-based fashion, using one’s

43

favourite logic. The model also allows to formally verify that these behaviours
achieve the desired goals, by verifying automatically generated proof obliga-
tions, and/or to generate automata which (provably) execute this behaviour.

An important point of our model is that it allows to take nondetermin-
ism and dynamicity into account. First, the environment is both dynamic and
nondeterministic, in the sense that the value of an environment variable may
change at any moment in time, independently from the current state of the
world and nonnecessarily according to rules known to the agents (or to any
rules at all). The only restriction is that environment variables cannot change
value while an agent is executing an atomic action. Second, the actions which
our method can model may also be nondeterministic. For instance, an action
with satisfaction condition v′ > 3 may assign an integer value to v nondeter-
ministically. More importantly, actions may fail to achieve their postcondition.

We believe that our study of how these aspects of the environment and
of actions impact the proof system for our model is interesting per se. In
particular, projection of satisfaction conditions and contexts for lazy or NNS
goals, and the need for GPFs prove very important.

As for the specified behaviours, they essentially correspond to policies. Our
model allows these policies themselves to be nondeterministic, using operators
like And and Or. For instance, parallism with nondeterministic scheduling can
be modelled by an Iter decomposition, with one child itself decomposed into
the Or of two threads. The resulting execution will be a concurrent execution
of the two threads.

A perspective for further work in this direction is to take stochasticity
into account, with features such as actions with a given probability to fail or
variables with a given probability not to change values. The resulting policies
would come themselves with probabilities to succeed or fail. We believe that
our model could be extended in this direction, with proof obligations allowing
for computing (or verifying) the probability of a decomposition to succeed or
fail, etc. In the same vein, numerical utilities could be attached to goals and
satisfaction conditions, and the expected utilitiy of a decomposition computed
from the subgoals using tools like proof obligations.

Another perspective is to take more interactions between agents into ac-
count. The model is currently agent-centered, though it allows to take into ac-
count interactions via the environment. We have presented a first step towards
handling more complex interactions, through the use of external goals. Our
current work focuses on extending the modelling capabilities of our method
for such dependencies between agents. Handling communication explicitly is
also an interesting perspective in this direction. Our ultimate goal in this di-
rection is to be able to verify behaviours of the whole system (as defined by
the interleaved execution of individual behaviours), may these goals be spec-
ified explicitly, or correspond to observed emerging behaviours. Clearly, our
event-based operational semantics serves these purposes, since the behaviour
of an agent is not seen as a sequence of tests and actions, but as behaviours
fired by trigerring events.

44

Finally, we aim at extending the GDT editor and code generator that
we have already developed and which are presented in [MSSZ07]. One of the
extensions will be to automatically generate proof obligations attached to a
GDT in order to make them be proven by a theorem prover.

References

[Abr96] J.-R. Abrial. The B-Book. Cambridge Univ. Press, 1996.

[ALW04] N. Alechina, B. Logan, and M. Whitsey. A complete and decidable logic for
resource-bounded agents. In Autonomous Agents and Multi-Agent Systems
(AAMAS’04), 2004.

[Bac93] R.J.R. Back. Atomicity refinement in a refinement calculus framework. Tech-
nical Report 141, Åbo Akademi, 1993.

[BBG+05] M. Baldoni, C. Baroglio, I. Gungui, A. Martelli, M. Martelli, V. Mascardi
nd V. Patti, and C. Schifanella. Reasoning About Agents’ Interaction Pro-
tocols Inside DCaseLP. In Declarative Agent Languages and Technologies
II, volume 3476 of LNCS, pages 112–131. Springer, 2005.

[BDH+01] J. Broersen, M. Dastani, Z. Huang, J. Hulstijn, and L. Van der Torre. The
BOID architecture: Conflicts between beliefs, obligations, intentions and de-
sires”. In Proceedings of the Fifth International Conference on Autonomous
Agents (AA2001), pages 9–16. ACM Press, 2001.

[BED+06] A. Bracciali, U. Endriss, N. Demetriou, T. Kakas, W. Lu, and K. Stathis.
Crafting the mind of PROSOCS agents. Applied Artificial Intelligence, 20(2–
4):105–131, 2006.

[BFPW03] R.H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model-checking
AgentSpeak. In AAMAS-03, Melbourne, Australia, 2003.

[BFVW03] R.H. Bordini, M. Fisher, W. Visser, and M. Wooldridge. Verifiable multi-
agent programs. In M. Dastani, J. Dix, and A. Seghrouchni, editors, ProMAS,
2003.

[BvET97] F.M.T. Brazier, P.A.T. van Eck, and J. Treur. Simulating Social Phenomena,
volume 456, chapter Modelling a Society of Simple Agents: from Conceptual
Specification to Experimentation, pages pp 103–109. Lecture Notes in Eco-
nomics and Mathematical Systems, 1997.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program Design: A Founda-
tion. Addison-Wesley, 1988.

[CP02] M. Cossentino and C. Potts. A CASE tool supported methodology for the
design of multi-agent systems. In SERP, 2002.

[Das08] Mehdi Dastani. 2APL: a practical agent programming language. Journal of
Autonomous Agents and Multi-Agent Systems, 16:214–248, 2008.

[dBHvdHM00] F.S. de Boer, K.V. Hindriks, W. van der Hoek, and J.-J.Ch. Meyer. Agent
programming with declarative goals. In 7th International Workshop on In-
telligent Agents. Agent Theories Architectures and Language, pages 228–243,
2000.

[DdBDM03] M. Dastani, F. de Boer, F. Dignum, and J.-J. Meyer. Programming agent
deliberation: An approach illustrated using the 3apl language. In Proceed-
ings of the Second International Conference on Autonomous Agents and
MultiAgent Systems (AAMAS’03), 2003.

[DW03] K.H. Dam and M. Winikoff. Comparing agent-oriented methodologies. In
Fifth International Bi-Conference Workshop on Agent-Oriented Informa-
tion Systems, 2003.

[Fis94] M. Fisher. A survey of concurrent METATEM – the language and its ap-
plications. In D. M. Gabbay and H. J. Ohlbach, editors, Temporal Logic -
Proceedings of the First Intemational Conference (LNAI Volume 827), pages
480–505. Springer-Verlag: Heidelberg, Germany, 1994.

45

[FL94] M. Faci and L. Logrippo. Specifying Features and Analysing Their Interac-
tions in a LOTOS Environment. In L.G. Bouma and H. Velthuijsen, editors,
Feature Interactions in Telecommunications Systems, 1994.

[GH78] J.V. Guttag and J.J. Horning. The algebraic specification of abstract data
types. Acta Informatica, 10:27–52, 1978.

[GLL00] G. De Giacomo, Y. Lesperance, and H. J. Levesque. Congolog, a concurrent
programming language based on the situation calculus. Artificial Intelli-
gence, 121(1-2):109–169, 2000.

[HBdHM99] K.V. Hindriks, F.S. De Boer, W. Van der Hoek, and J.-J. Ch. Meyer.
Agent programming in 3APL. Autonomous Agents and Multi-Agent Sys-
tems, 2(4):357–401, 1999.

[HSB02] J.F. Hubner, J.S. Sichman, and O. Boissier. Spécification structurelle, fonc-
tionnelle et déontique d’organisations dans les SMA. In Journees Franco-
phones Intelligence Artificielle et Systemes Multi-Agents (JFIADSM’02).
Hermes, 2002.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, Massachusets, USA,
1979.

[IGG99] C. Iglesias, M. Garrijo, and J. Gonzalez. A survey of agent-oriented method-
ologies. In Jörg Müller, Munindar P. Singh, and Anand S. Rao, editors,
Proceedings of the 5th International Workshop on Intelligent Agents V:
Agent Theories, Architectures, and Languages (ATAL-98), volume 1555,
pages 317–330. Springer-Verlag: Heidelberg, Germany, 1999.

[Jon90] C.B. Jones. Systematic Software Development using VDM. Prentice Hall
International, 1990.

[JSW98] N.R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research
and development. Autonomous Agents and Multi-Agents Systems, 1(1):275–
306, 1998.

[KLP04] M. Kacprzak, A. Lomuscio, and W. Penczek. Verification of multiagent
systems via unbounded model checking. In Autonomous Agents and Multi-
Agent Systems (AAMAS’04), 2004.

[KP04] M. Kacprzak and W. Penczek. Unbounded model checking for alternating-
time temporal logic. In Autonomous Agents and Multi-Agent Systems (AA-
MAS’04), 2004.

[Lam96] L. Lamport. The syntax and semantics of tla+. Part 1: Definitions and
Modules, June 1996.

[LLM03] J. Lang, P. Liberatore, and P. Marquis. Propositional independence —
formula-variable independence and forgetting. Journal of Artificial Intel-
ligence Research, 18:391–443, 2003.

[MFS06] B. Mermet, D. Fournier, and G. Simon. An agent compositional proof system.
In From Agent Theory to Agent Implementation (AT2AI’06), 2006.

[MMZ97] M. Martelli, V. Mascardi, and F. Zini. CaseLP: a Complex Application
Specification Environment base on Logic Programming. In Proc. of ICLP’97
workshop on Logc Programming and Mult-Agents, pages 35–50, 1997.

[MPW92] R. Milner, J. Parrow, and D. Wlaker. A calculus of mobile processes. Journal
of Information and Computation, 100, 1992.

[MSSZ07] B. Mermet, G. Simon, A. Saval, and B. Zanuttini. Specifying, verifying and
implementing a MAS: A case study. In M. Dastani, A. El Fallah Segrouchni,
A. Ricci, and M. Winikoff, editors, Post-Proc. 5th International Workshop on
Programming Multi-Agent Systems (ProMAS’07), number 4908 in Lecture
Notes in Artificial Intelligence, pages 172–189. Springer, 2007.

[MSZ08] Bruno Mermet, Gaële Simon, and Bruno Zanuttini. Agent design with
Goal Decomposition Trees: Companion paper. Technical report, GREYC,
CNRS, Université de Caen Basse-Normandie, ENSICAEN, 2008. Available at
http://www.info.unicaen.fr/~zanutti/data/articles/msz08companion.pdf.

[OSR92] S. Owre, N. Shankar, and J. Rushby. Pvs: A prototype verification system.
In CADE 11, 1992.

46

[Rao96] A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable
language. In W. Van de Velde and J. Perram, editors, MAAMAW’96, volume
1038, Eindhoven, The Netherlands, 1996. LNAI.

[RG95] A. Rao and M. Georgeff. BDI agents from theory to practice. In Technical
note 56. AAII, 1995.

[RL04] F. Raimondi and A. Lomuscio. Verification of multiagent systems via or-
derd binary decision diagrams: an algorithm and its implementation. In
Autonomous Agents and Multi-Agent Systems (AAMAS’04), 2004.

[SDB02] Arsne Sabas, Sylvain Delisle, and Mourad Badri. A comparative analysis of
multiagent system development methodologies: Towards a unified approach.
In Robert Trappl, editor, Cybernetics and Systems, pages 599–604. Austrian
Society for Cybernetics Studies, 2002.

[SF06] G. Simon and M. Flouret. Implementing validated agents behaviours with
automata base on goal decomposition trees. In Agent Oriented Software
Engineering VI, volume 3950 of LNCS, pages 124–138. Springer Verlag, 2006.

[SLL02] S. Shapiro, Y. Lesprance, and H. J. Levesque. The Cognitive Agents Speci-
fication Language and Verification Environment for Multiagent Systems. In
AAMAS, pages 19–26. ACM Press, 2002.

[SM90] L.M. Stephens and M.B. Merx. The effect of agent control strategy on the
performance of a DAI pursuit problem. In 10th International Workshop on
Distributed Artificial Intelligence, Bandera, Texas, 1990.

[SMF06] G. Simon, B. Mermet, and D. Fournier. Goal Decomposition Tree: An agent
model to generate a validated agent behaviour. In Matteo Baldoni, Ulle En-
driss, Andrea Omicini, and Paolo Torroni, editors, Declarative Agent Lan-
guages and Technologies III: Third International Workshop, DALT 2005,
volume 3904 of LNCS, pages 124–140. Springer Verlag, 2006.

[Spi87] J. M. Spivey. Understanding Z: a specification language and its formal se-
mantics. Cambridge University Press, 1987.

[VHL01] R. Vincent, B. Horling, and V. Lesser. An agent infrastructure to build and
evaluate multi-agent systems: the Java agent framework and multi-agent
system simulator. In Infrastructure for Agents, Multi-Agent Systems, and
Scalable Multi-Agent Systems, 2001.

[vRDDM04] M.B. van Riemsdijk, M. Dastani, F. Dignum, and J.-J.Ch. Meyer. Dynamics
of declarative goals in agent programming. In Proceedings of Declarative
Agent Languages and Technologies (DALT’04), 2004.

[WJK00] M. Wooldridge, N. R. Jennings, and D. Kinny. The gaia methodology for
agent-oriented analysis and design. Journal of Autonomous Agents and
Multi-Agent Systems, 3(3):285–312, 2000.

[WPHT03] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah. Declarative &
procedural goals in intelligent agent systems. In 8th International Conference
on Principles of Knowledge Representation and Reasoning (KR2002), 2003.

