
GDTs and proofs for Robots on Mars

Bruno Mermet Arnaud Saval Gaële Simon

Bruno Zanuttini ∗

October 19, 2006

Abstract

This document details the application of the GDT model to the sce-

nario entitled “Robots on Mars”. Full GDTs and proofs are given for both

robots.

1 Introduction and notation

This paper describes in full details the application of the GDT model to the
scenario of two robots missioned to clean garbage on the surface of Mars.

The reader is referred to Specifying, Verifying and Implementing a MAS:

a case study by Mermet, Saval, Simon and Zanuttini, currently submitted to
AAMAS’07, for a presentation of the application.

On notation For sake of brevity, when giving the context of a node or leaf,
we only give the part of it which is useful to the proof of the leaf or node. Thus
if C is the context given for a node, the full one is of the form C ∧ C ′.

2 Environment

Constants These are variables whose value cannot be modified by any agent
or by the environment itself.

• xMin, yMin, xMax, yMax are integers denoting the minimum and max-
imum x and y coordinates on the grid; it is assumed that xMin < xMax
and yMin < yMax hold;

• size is an integer denoting the size (number of cells) of the grid; thus
size = (xMax − xMin + 1) × (yMax − yMin + 1) holds;

• xR2
, yR2

denote the position of R2, on the x and the y axis, respectively;
xMin ≤ xR2

≤ xMax and yMin ≤ yR2
≤ yMax hold. We also assume

(xR2
, yR2

) 6= (xMin, yMin); this is only a technical condition, which can
be removed with slightly modifying R1’s GDT.

∗GREYC, University of Caen, Boulevard du Maréchal Juin, F-14032 Caen Cedex, France

1

Variables

• for all x, y with xMin ≤ x ≤ xMax and yMin ≤ y ≤ yMax, G(x, y) is a
Boolean; it is true if and only if there is a piece of garbage on cell (x, y)
of the grid;

• G′(x, y) indicates whether there is a piece of garbage on the grid on cell
(x, y) at the next moment; note the difference with G′(x′, y′) (the same
remarks apply to Gtmp(x, y)).

Invariant The system invariant is simply true. As a consequence, we ignore
it in the following.

Shorthand notation This notation does not define new variables or con-
stants, and is only introduced for sake of brevity and clarity.

• posR2
is a shorthand for (xR2

, yR2
);

• posMin is a shorthand for (xMin, yMin);

• endGrid is a shorthand for (xMin, yMax) if (yMax−yMin)%2 = 1, and
for (xMax, yMax) otherwise.

• (x, y) ≺ (x′, y′) (read “(x, y) is before (x′, y′)”) is a shorthand notation
for:







y < y′

∨ (y = y′ ∧ (y − yMin)%2 = 0 ∧ x < x′)
∨ (y = y′ ∧ (y − yMin)%2 = 1 ∧ x > x′)

• grid (“all cells in the grid except R2’s”) is a shorthand notation for {(x, y) |
xMin ≤ x ≤ xMax ∧ yMin ≤ y ≤ yMax ∧ (x, y) 6= posR2

}.

3 Robot R1

We first describe the robot, then give its GDT and finally prove its validity
(numbered subsections).

Internal variables

• x, y are integers denoting the current position of R1 (on the x and y axis,
repectively);

• xSaved, ySaved are integers used to save the position where the last piece
of garbage has been found (in order to be able to continue searching from
this position on);

• nbAttempts is an integer denoting the number of times R1 has tried to
pick the piece of garbage on the current cell;

2

• busy is a boolean; it is true if and only if R1 is currently carrying a piece
of garbage;

• clean is the number of cells R1 has cleaned or observed to be clean.

Invariant R1’s invariant is the following:

IR2
=















xMin ≤ x ≤ xMax ∧ yMin ≤ y ≤ yMax
∧ xMin ≤ xSaved ≤ xMax ∧ yMin ≤ ySaved ≤ yMax
∧ 0 ≤ nbAttempts ≤ 3
∧ clean ⊆ grid

Actions

• initPick (initialize a series of attempts to pick a piece of garbage):

– preconditions: ¬busy ∧ G(x, y),

– postconditions: nbAttempts′ = 0.

• pick (pick the piece of garbage on the current cell):

– preconditions: ¬busy ∧ G(x, y) ∧ nbAttempts < 3,

– postconditions:














nbAttempts′ = nbAttempts + 1

∧ nbAttempts′ = 3 →





busy′

∧ ¬G′(x′, y′)
∧ clean′ = clean ∪ {pos}

• drop (drop the piece of garbage currently held to the current cell):

– preconditions: busy ∧ ¬G(x, y),

– postconditions: ¬busy ∧ G(x, y).

• moveH(step) (move one cell horizontally of given step):

– preconditions: step = +1 ∨ step = −1,

– postconditions: x′ = x + step.

• moveV(step) (move one cell vertically into given direction):

– preconditions: step = +1 ∨ step = −1,

– postconditions: y′ = y + step.

• recordCleanCell (record the fact that the current cell is clean):

– preconditions: ¬G(x, y),

– postconditions: clean′ = clean ∪ {pos}.

• skip (do nothing):

– preconditions: true,

– postconditions: true.

3

Shorthand notation

• dx is a shorthand for |x′ − x| and similarly for dy.

• dxR2 is a shorthand for |x−xR2
|, and similarly for dyR2, dxMin, dyMin,

dxSaved, dySaved.

• dxR′
2 is a shorthand for |x′ − xR2

|, and similarly for dyR′
2, dxMin′,

dyMin′, dxSaved′ and dySaved′; observe that only x (y) is primed.

• pos is a shorthand for (x, y), pos′ is a shorthand for (x′, y′), postmp is a
shorthand for (xtmp, ytmp), and similarly for posR2

, posSaved, posSaved′

and posSavedtmp.

• lt(pos) (“number of cells before pos and different from R2’s cell”) is a
shorthand notation for |{pos2 | pos2 ≺ pos ∧ pos2 6= posR2

}|, i.e., for:

(y − yMin) × (xMax − xMin + 1) + xMax − x − afterR2

if (y − yMin)%2 = 1, and for:

(y − yMin) × (xMax − xMin + 1) + x − xMin − afterR2

if (y−yMin)%2 = 0, where afterR2 = 1 if posR2
≺ (x, y) and afterR2 =

0 otherwise.

GDT R1’s GDT is given on Figure 1. It has the following properties:

• Trigerring context: TCR1
= true;

• Precondition: PrecGDTR1
= (clean = ∅ ∧ ¬busy ∧ pos = posMin);

• Initialization initR1 :























clean = ∅;
busy = false;
pos = posMin;
posSaved = posMin;
nbAttempts = 0;

Obviously, initR1 establishes PrecGDTR1
and IR2

. Note that R1 is intended
to execute its GTD only once: after executing its GDT, its precondition is not
true any more.

4

L

L

LL

L

L

L

SeqAnd

Case

CaseSeqAnd

SeqAnd

SeqAnd

CaseSeqAnd

Case

Case

Iter

Iter

Iter

Iter

Iter

1

2

25

26

2827

29 3021

22

2423

10

5

3

4

6

7 8

9 12

14

13

11

18

19 2015

16 17

SyncSeqAndd
G(x,y)

G(x,y)
SyncSeqAnd

record
clean
cell

initialize
nb. attempts

pick posSaved’
=pos

moveH(...)

wait R2’s
cell empty

drop

moveH(...)

skip

moveV(+1) moveH(...)

...

pos!=endGrid

G(x,y)

dxR2!=0 dyR2!=0

moveV(...)

moveV(...)

dxSaved!=0 dySaved!=0

! G(x,y)

pos=endGrid

Figure 1: R1’s GDT

3.1 Clean Mars

Visit each cell except R2’s and ensure it is clean or clean it.

Context: clean = ∅∧¬busy∧pos = posMin∧pos 6= posR2
(from PrecGDTR1

and assumption posR2
6= posMin)

S.C.: clean = grid
Type: Lazy, NS
Operator: Iter
Child(ren): Clean current cell and go to next one (3.2, p. 6)

Proof: Let the variant V be |grid \ clean|, and let its lower bound be V0 = 0.

5

We have to prove:

IR2
∧ (C3.1 ∨ C3.2) ∧ ¬SC3.1 ∧ T (SC3.2) |= T (V) = V0 → T (SC3.1)

IR2
∧ (C3.1 ∨ C3.2) ∧ ¬SC3.1 ∧ ¬T (SC3.1) |= T (SC3.2) → T (V) < V

IR2
∧ (C3.1 ∨ C3.2) ∧ ¬SC3.1 ∧ ¬T (SC3.1) |= T (SC3.2) → T (C3.2)

The first entailment holds because IR2
entails clean′ ⊆ grid and T (V) = V0

is |grid\clean′| = 0, thus together they entail clean′ = grid, which is T (SC3.1).
As for the second entailment, observe that T (SC3.2) entails clean′ = clean∪

{pos}∨clean′ = grid. Thus ¬T (SC3.1)∧T (SC3.2) entail clean′ = clean∪{pos}.
Together with C3.1 this entails clean = ∅ ⊂ {pos} = clean′ and thus T (V) < V .
Now C3.2 entails clean = lt(pos) and thus pos /∈ clean, from what it follows
clean ⊂ clean′ again.

As for the third entailment, observe that T (SC3.2) entails T (C3.2)∨(¬busy′∧
clean′ = grid). Thus ¬T (SC3.1) ∧ T (SC3.2) entail T (C3.2).

3.2 Clean current cell and go to next one

Ensure the current cell is clean or clean it, and move to the next one different
from R2’s, if any.

Context: ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2
(from C3.1)

S.C.:

{

(¬busy′ ∧ pos′ 6= posR2
∧ clean′ = clean ∪ {pos} ∧ clean′ = lt(pos′))

∨ (¬busy′ ∧ clean′ = grid)
Type: Non lazy, NS
Operator: SeqAnd
Child(ren):
- Clean current cell (3.3, p. 6)
- Go to next cell different from R2’s (3.25, p. 17)

Proof: We have to prove:

IR2
∧ C3.2 |= [v′ = vtmp]T ((SC3.3)i) ∧ [v = vtmp]T (SC3.25) → T (SC3.2)

Since x, y, clean are internal variables, [v = vtmp]SC3.25 entails either ¬busy′ ∧
clean′ = grid or ¬busy′ ∧ pos′ 6= posR2

∧ clean′ = cleantmp ∧ clean′ = lt(pos′).
In the first case, this is exactly the second disjunct of T (SC3.2). In the second
case, since [v′ = vtmp]T ((SC3.3)i) entails cleantmp = clean ∪ {pos}, it is easily
seen that the first conjunct of T (SC3.2) is entailed as well. Thus in both cases,
T (SC3.2) is entailed.

3.3 Clean current cell

Ensure the current cell is clean or clean it.

6

Context: ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2
(from C3.2)

S.C.: clean′ = clean∪{pos}∧¬busy′∧pos′ 6= posR2
∧clean′ = lt(pos′)∪{pos′}

Type: Non lazy, NS
Operator: Case
Child(ren):
- (If ¬G(x, y)) Record current cell is clean (3.4, p. 7)
- (If G(x, y)) Clean current cell (3.5, p. 7)

Proof: We have to prove:

IR2
∧ C3.3 |=







condition1 ∨ condition2

condition1 ∧ T (SC3.4) → T (SC3.3)
condition2 ∧ T (SC3.5) → T (SC3.3)

where condition1 = ¬G(x, y) and condition2 = G(x, y).
The first entailment obviously holds since condition1 = ¬condition2. The

second one holds because SC3.4 entails clean′ = clean ∪ {pos} and ¬busy′

directly, clean′ = lt(pos′) ∪ {pos′} together with clean = lt(pos) in C3.3 and
pos′ 6= posR2

together with pos 6= posR2
in C3.3. The third one holds for exactly

the same reasons since SC3.5 = SC3.4.

3.4 Record current cell is clean (leaf)

Record the fact that the current cell is clean.

Context: ¬G(x, y)∧¬busy∧ clean = lt(pos)∧ pos 6= posR2
(from condition on

case branch and C3.3)
S.C.: clean′ = clean ∪ {pos} ∧ ¬busy′ ∧ pos′ = pos
Type: Non lazy, NS
Action: recordCleanCell;

Proof: Clearly, C3.4 entails the preconditions of recordCleanCell. The
postconditions of recordCleanCell entail clean′ = clean ∪ {pos}. Finally,
since busy and pos are not modified by recordCleanCell, ¬busy′ follows from
C3.4 and pos′ = pos is obvious.

Invariant: Obvious for variables x, y, xSaved, ySaved, nbAttempts since they
are not modified by recordCleanCell. Thus we are left with proving clean′ ⊆
grid, which amounts to proving pos ∈ grid since IR2

entails clean ⊆ grid and
T (SC3.4) entails clean′ = clean ∪ {pos}. But from IR2

it follows xMin ≤ x ≤
xMax and yMin ≤ y ≤ yMax. Since C3.4 entails pos 6= posR2

, we finally have
pos ∈ grid, as desired.

3.5 Clean current cell

Clean the current cell.

7

Context: G(x, y) ∧ ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2
(from condition on

case branch and C3.3)
S.C.: clean′ = clean ∪ {pos} ∧ ¬busy′ ∧ pos′ = pos
Type: Non lazy, NS
Operator: SeqAnd
Child(ren):
- Pick (3.6, p. 8)
- Get rid (3.10, p. 10)

Proof: We have to prove:

IR2
∧ C3.3 |= [v′ = vtmp]T ((SC3.6)i) ∧ [v = vtmp]T (SC3.10) → T (SC3.3)

Since clean, x, y are internal variables, [v′ = vtmp](SC3.6)i entails cleantmp =
clean ∪ {pos} and postmp = pos. Now [v = vtmp]SC3.10 entails ¬busy′, pos′ =
postmp and clean′ = cleantmp, thus T (SC3.5) follows.

3.6 Pick

Pick the piece of garbage on the current cell.

Context: G(x, y) ∧ ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2
(from C3.5)

S.C.: ¬G′(x′, y′) ∧ busy′ ∧ clean′ = clean ∪ {pos} ∧ pos′ = pos
Type: Non lazy, NS
Operator: SyncSeqAnd(G(x, y))
Child(ren):
- Initialize attempts (3.7, p. 8)
- Try to pick until success (3.8, p. 9)

Proof: We have to prove:

IR2
∧ C3.6 |= [v′ = vtmp]T ((SC3.7)i,G(x,y)) ∧ [v = vtmp]T (SC3.8) → T (SC3.6)

Since clean, pos are internal variables, [v′ = vtmp](T (SC3.7))i entails cleantmp =
clean and postmp = pos. Then it is easily that together with [v = vtmp]T (SC3.8)
this entails T (SC3.6).

3.7 Initialize attempts (leaf)

Initialize the number of attempts to pick a piece of garbage.

Context: G(x, y) ∧ ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2
(from C3.6)

8

S.C.:























nbAttempts = 0
∧ clean′ = clean ∧ clean′ = lt(pos′)
∧ ¬busy
∧ G(x, y)
∧ pos′ = pos ∧ pos′ 6= posR2

Type: Non lazy, NS
Action: initPick;

Proof: Obvious since the preconditions of initPick are entailed by C3.7,
conjunct nbAttempts′ = 0 in T (SC3.7) is the postcondition of initPick, and
every other conjunct in T (SC3.7) is obtained from the context together with the
fact that the action does not affect them (recall that environment variables are
assumed not to change values during the execution of an elementary goal).

Invariant: Obvious for variables x, y, xSaved, ySaved, clean, since they are
not modified. Obvious for variable nbAttempts too since it is set to 0.

3.8 Try to pick until success

Try to pick the piece of garbage on the current cell until success.

Context: nbAttempts = 0 ∧ G(x, y) ∧ ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2

(from SC3.7 since G(x, y) is synchronized in 3.6)
S.C.: ¬G′(x′, y′) ∧ busy′ ∧ clean′ = clean ∪ {pos} ∧ pos′ = pos
Type: Lazy, NS
Operator: Iter
Child(ren): Try to pick (3.9, p. 10)

Proof: Let V be the variant 3 − nbAttempts, and let its lower bound be
V0 = 0. Observe that V is well-defined, since IR2

entails nbAttempts ≤ 3. We
have to prove:

IR2
∧ ¬SC3.8 ∧ (C3.8 ∨ C3.9) ∧ T (SC3.9) |= T (V) = V0 → T (SC3.8)

IR2
∧ ¬SC3.8 ∧ ¬T (SC3.8) ∧ (C3.8 ∨ C3.9) |= T (SC3.9) → T (V) < V

IR2
∧ ¬SC3.8 ∧ ¬T (SC3.8) ∧ (C3.8 ∨ C3.9) |= T (GPF3.9) → T (V) < V

IR2
∧ ¬SC3.8 ∧ (C3.8 ∨ C3.9) ∧ ¬T (SC3.8) |= T (SC3.9) → T (C3.9)

IR2
∧ ¬SC3.8 ∧ (C3.8 ∨ C3.9) ∧ ¬T (SC3.8) |= T (GPF3.9) → T (C3.9)

The first entailment is obvious since T (SC3.9) is exactly T (SC3.8).
The second entailment holds because ¬T (SC3.8) ∧ T (SC3.9) is false. The

third one holds because T (GPF3.9) entails nbAttempts′ = nbAttempts + 1,
which in turn entails 3−nbAttempts′ = 3−nbAttempts− 1 < 3−nbAttempts,
that is, T (V) < V .

The fourth entailment is obvious since again T (SC3.9) is not consistent with
¬T (SC3.8). Finally, the fifth one holds because T (GPF3.9) together with either
C3.8 or with C3.9 clearly entails T (C3.9).

9

3.9 Try to pick (leaf)

Try to pick the piece of garbage on the current cell.

Context: G(x, y) ∧ ¬busy ∧ clean = lt(pos) ∧ pos 6= posR2
∧ nbAttempts < 3

(from C3.8)
S.C.: busy′ ∧ ¬G′(x′, y′) ∧ clean′ = clean ∪ {pos} ∧ pos′ = pos

G.P.F.:







nbAttempts′ = nbAttempts + 1 ∧ nbAttempts′ < 3
∧ pos′ = pos ∧ clean′ = clean ∧ busy′ = busy
∧ G(′, x′)g

Type: Non lazy, NNS
Action: pick;

Proof: Obvious.

G.P.F.: Obvious.

Invariant: Obvious for variables x, y, xSaved, ySaved, since they are not
modified. As for variable clean, the proof is the same as that in Goal 3.4 on
page 7, since pos 6= posR2

is entailed by C3.9 too. Finally, nbAttempts′ ≤ 3
holds because C3.9 entails nbAttempts < 3 and initPick has nbAttempts′ =
nbAttempts + 1 as a postcondition, and 0 ≤ nbAttempts′ holds because IR2

entails 0 ≤ nbAttempts and nbAttempts′ = nbAttempts.

3.10 Get rid

Bring the piece or garbage currently held to R2 and come back to the current
cell.

Context: busy (from SC3.6)
S.C.: ¬busy′ ∧ pos′ = pos ∧ clean′ = clean
Type: Non lazy, NS
Operator: SeqAnd
Child(ren):
- Save position and give R2 (3.11, p. 11)
- Go to saved position (3.21, p. 15)

Proof: We have to prove:

IR2
∧ C3.10 |= [v′ = vtmp]T ((SC3.11)i) ∧ [v = vtmp]T (SC3.21) → T (SC3.10)

Since x, y, xSaved, ySaved are internal variables, [v′ = vtmp](T (SC3.11))i en-
tails posSavedtmp = pos; on the other hand, [v = vtmp]T (SC3.21) entails
pos′ = posSavedtmp and ¬busy′, and thus conjuncts ¬busy′ and pos′ = pos
in T (SC3.10) follow. Finally, clean′ = clean is entailed because variable clean
is internal and does not occur in the subtree rooted at this node.

10

3.11 Save position and give R2

Save the current position and bring the piece of garbage currently held to R2.

Context: busy (from C3.10)
S.C.: pos′ = posR2

∧ ¬busy′ ∧ G′(x′, y′) ∧ posSaved′ = pos
Type: Non lazy, NS
Operator: SeqAnd
Child(ren):
- Save position (3.12, p. 11)
- Go and give R2 (3.13, p. 11)

Proof: We have to prove:

IR2
∧ C3.11 |= [v′ = vtmp]T ((SC3.12)i) ∧ [v = vtmp]T (SC3.13) → T (SC3.11)

Conjuncts pos′ = posR2
, ¬busy′ and G′(x′, y′) in T (SC3.11) follow directly

from [v′ = vtmp]T (SC3.13). As for conjunct posSaved′ = pos, it follows from
posSavedtmp = postmp∧postmp = pos, which is entailed by [v′ = vtmp](SC3.12)i,
together with posSaved′ = pos, which is entailed by [v = vtmp]T (SC3.13).

3.12 Save position (leaf)

Save the current position into variables xSaved, ySaved in order to search for
garbage from the last visited cell on next time.

Context: busy (from C3.11)
S.C.: posSaved′ = pos′ ∧ pos′ = pos ∧ busy′

Type: Non lazy, NS
Action: posSaved′ = pos;

Proof: Obvious.

Invariant: Obvious for variables clean and nbAttempts, which is not modified
by the action. Also obvious for x, y, which are not modified by the action
either. Thus xMin ≤ x′ ≤ xMax and yMin ≤ y′ ≤ yMax hold. Since SC3.12

is (xSaved′, ySaved′) = (x, y), we also have xMin ≤ xSaved′ ≤ xMax and
yMin ≤ ySaved′ ≤ yMax.

3.13 Go and give R2

Go to R2’s cell and give it the piece of garbage currently held.

Context: posSaved = pos ∧ busy (from SC3.12)
S.C.: pos′ = posR2

∧ ¬busy′ ∧ G′(x′, y′) ∧ posSaved′ = posSaved

11

Type: Non lazy, NS
Operator: SeqAnd
Child(ren):
- Go to R2 (3.14, p. 12)
- Give to R2 (3.18, p. 14)

Proof: We have to prove:

IR2
∧ C3.13 |= [v′ = vtmp]T ((SC3.14)i) ∧ [v = vtmp]T (SC3.18) → T (SC3.13)

Since pos is internal, [v′ = vtmp](T (SC3.14))i entails postmp = posR2
, which

together with pos′ = postmp in [v′ = vtmp]SC3.18 entails pos′ = posR2
. Now

¬busy′ and G′(x′, y′) are entailed directly by [v = vtmp]SC3.18, and posSaved′ =
posSaved is entailed by the fact that variables xSaved, ySaved are internal and
do not occur in the subtree rooted at this node.

3.14 Go to R2

Go to R2’s cell.

Context: busy (from C3.13)
S.C.: pos = posR2

∧ busy
Type: Lazy, NS
Operator: Iter
Child(ren): Move towards R2 (3.15, p. 13)

Proof: Since busy is internal and does not occur in the subtree rooted at this
node, its value obviously propagates through this node, so we ignore it in the
following.

Let V be the variant dxR2 + dyR2, and let its lower bound be V0 = 0. Then
we have to prove:

IR2
∧ (C3.14 ∨ C3.15) ∧ ¬SC3.14 ∧ T (SC3.15) |= T (V) = V0 → T (SC3.14)

IR2
∧ (C3.14 ∨ C3.15) ∧ ¬SC3.14 ∧ ¬T (SC3.14) |= T (SC3.15) → T (V) < V

IR2
∧ (C3.14 ∨ C3.15) ∧ ¬SC3.14 ∧ ¬T (SC3.14) |= T (SC3.15) → T (C3.15)

The first entailment holds because T (V) = V0 entails x′ = xR2
and y′ = yR2

and thus pos′ = posR2
, that is, T (SC3.14).

The second entailment holds because each disjunct in T (SC3.15) entails
dxR′

2 + dyR′
2 = dxR2 + dyR2 − 1 and thus dxR′

2 + dyR′
2 < dxR2 + dyR2,

that is, T (V) < V .
Finally, the third entailment holds because ¬T (SC3.14) is pos′ 6= posR2

, i.e.,
T (C3.15).

12

3.15 Move towards R2

Move one cell towards R2’s position.

Context: pos 6= posR2
(from ¬SC3.14 since 3.14 is lazy)

S.C.:

{

(dxR′
2 = dxR2 − 1 ∧ dyR′

2 = dyR2)
∨ (dxR′

2 = dxR2 ∧ dyR′
2 = dyR2 − 1)

Type: Non lazy, NS
Operator: Case
Child(ren):
- (If dxR2 6= 0) Move towards R2 along x (3.16, p. 13)
- (If dyR2 6= 0) Move towards R2 along y (3.17, p. 14)

Proof: We have to prove:

IR2
∧ C3.15 |=







condition1 ∨ condition2

condition1 ∧ T (SC3.16) → T (SC3.15)
condition2 ∧ T (SC3.17) → T (SC3.15)

where condition1 = (dxR2 6= 0) and condition2 = (dyR2 6= 0).
Since C3.15 entails pos 6= posR2

, obviously the first entailment holds. The
other two entailments are obvious as well, considering only SC3.16 and SC3.17.

3.16 Move towards R2 along x (leaf)

Move one cell towards R2’s position along the x axis.

Context: dxR2 6= 0 (from condition on case branch)
S.C.: dxR′

2 = dxR2 − 1 ∧ y′ = y
Type: Non lazy, NS
Action: moveH(−

x−xR2

|x−xR2
|);

Proof: Observe that
x−xR2

|x−xR2
| is well-defined since C3.16 entails |x − xR2

| 6= 0.

Moreover, obviously the preconditions of moveH(.) are satisfied. Now we have to
prove that its postconditions entail T (SC3.16). Since y′ = y is obviously entailed
and C3.16 entails |x − xR2

| 6= 0, it is enough to prove:

|x − xR2
| 6= 0 ∧ x′ = x −

x − xR2

|x − xR2
|
|= |x′ − xR2

| = |x − xR2
| − 1

Assume x > xR2
; then |x−xR2

| = x−xR2
and |x−1−xR2

| = x−xR2
, and thus

we are left with proving that x−xR2
6= 0∧x′ = x−1 entails x′−xR2

= x−xR2
−1,

which is obviously true. The proof is dual with the assumption x < xR2
, and

with the assumption x = xR2
the entailment is true because the premisses are

false (since C3.16 entails x 6= xR2
).

13

Invariant: Obvious for variables y, xSaved, ySaved, clean, nbAttempts, since
they are not modified by the action. We thus consider variable x.

Assume x > xR2
. Then x′ = x − 1, as shown above, and thus x′ ≥ xR2

.
Now IR2

entails x ≤ xMax, and xMin ≤ xR2
is always true. It follows xMin ≤

xR2
≤ x′ < x ≤ xMax and thus xMin ≤ x′ ≤ xMax. The proof for the case

x < xR2
is dual, and the case x = xR2

yields false premisses as above.

3.17 Move towards R2 along y (leaf)

Move one cell towards R2’s position along the y axis.

Context: dyR2 6= 0 (from condition on case branch)
S.C.: dyR′

2 = dyR2 − 1 ∧ x′ = x
Type: Non lazy, NS
Action: moveV(−

y−yR2

|y−yR2
|);

Proof: Similar to the proof of leaf 3.16 on page 13.

Invariant: Idem.

3.18 Give to R2

Give the piece of garbage currently held to R2.

Context: pos = posR2
∧ busy (from SC3.14)

S.C.: ¬busy′ ∧ G′(x′, y′) ∧ pos′ = pos
Type: Non lazy, NS
Operator: SyncSeqAnd(G(x, y))
Child(ren):
- Wait for R2’s cell to be empty (3.19, p. 14)
- Drop (3.20, p. 15)

Proof: We have to prove:

IR2
∧C3.18 |= [v′ = vtmp]T ((SC3.19)i,G(x,y))∧ [v = vtmp]T (SC3.20) → T (SC3.18)

Conjuncts ¬busy′ and G′(x′, y′) are entailed directly by [v = vtmp]T (SC3.20),
and pos′ = pos holds because variable pos is internal and does not occur in the
subtree rooted at this node.

3.19 Wait for R2’s cell to be empty (external)

Wait for R2’s cell to be empty.

14

Context: pos = posR2
∧ busy (from C3.18)

S.C.: ¬G(x, y) ∧ busy
Type: Lazy, NS
Responsible: R2, Clean cell (4.1, p. 21)

Proof: We first have to check that the referenced node is necessarily satisfiable,
which is indeed true.

Now we have to show that the achievement of Node 4.1 of R2 entails the
achievement of this node. Indeed, since pos and busy are internal we have
pos′ = pos and busy′ = busy, and thus: C3.19 ∧ T (SC4.1) |= ¬G′(xR2

, yR2
) ∧

pos′ = posR2
∧ busy′ |= ¬G′(x′, y′) ∧ busy′ which is exactly T (SC3.19).

Finally, we have to prove that every node of R2’s GDT whose context is
compatible with C3.19 eventually leads to the achievement of its Node 4.1, and
that Node 4.1 is indeed compatible. This latter point is clearly true. Now since
this Node 3.19 is lazy, we have to check this point for every node in R2’s GDT
whose context is compatible with C3.19∧¬SC3.19, that is, pos = posR2

∧G(x, y).
Clearly, only Nodes 4.1 and 4.2 are compatible with this context, and obviously
both eventually end up with satisfaction of SC4.1. Finally, if R2 is not executing
its GDT, then since its precondition is true (as its satisfaction condition shows),
G(x, y) should have triggerred its GDT, a contradiction.

3.20 Drop (leaf)

Drop the piece of garbage currently held onto the current cell.

Context: ¬G(x, y) ∧ busy (from SC3.19 since G(x, y) is synchronized in 3.18)
S.C.: ¬busy′ ∧ G′(x′, y′)
Type: Non lazy, NS
Action: drop;

Proof: Clearly, the preconditions of drop are satisfied, and its postconditions
entail SC3.20.

Invariant: Obvious since no variable which occurs in the invariant is modified
by drop.

3.21 Go to saved position

Go back to the saved position.

Context: ¬busy (from SC3.11)
S.C.: pos = posSaved ∧ ¬busy
Type: Lazy, NS

15

Operator: Iter
Child(ren): Move towards saved position (3.22, p. 16)

Proof: Similar to that of node 3.14 on page 12, replacing dxR2 with dxSaved,
xR2

with xSaved, posR2
with posSaved and busy with ¬busy.

3.22 Move towards saved position

Move one cell towards the saved position.

Context: pos 6= posSaved (from ¬SC3.21 since 3.21 is lazy)

S.C.:

{

(dxSaved′ = dxSaved − 1 ∧ dySaved′ = dySaved)
∨ (dxSaved′ = dxSaved ∧ dySaved′ = dySaved − 1)

Type: Non lazy, NS
Operator: Case
Child(ren):
- (If dxSaved 6= 0) Move towards saved position along (3.23, p. 16)
- (If dySaved 6= 0) Move towards saved position along y (3.24, p. 16)

Proof: Similar to the proof of node 3.15 on page 13, replacing dxR2 with
dxSaved, xR2

with xSaved and posR2
with posSaved.

3.23 Move towards saved position along (leaf)

Move one cell towards the saved position along the x axis.

Context: dxSaved 6= 0 (from condition on case branch)
S.C.: dxSaved′ = dxSaved − 1 ∧ y′ = y
Type: Non lazy, NS
Action: moveH(− x−xSaved

|x−xSaved|);

Proof: Similar to the proof of leaf 3.16 on page 13, replacing dxR2 with
dxSaved and xR2

with xSaved.

Invariant: Idem since the invariant guarantees xSaved ≥ xMin.

3.24 Move towards saved position along y (leaf)

Move one cell towards the saved position along the y axis.

Context: dySaved 6= 0 (from condition on case branch)
S.C.: dySaved′ = dySaved − 1 ∧ x′ = x

16

Type: Non lazy, NS
Action: moveV(− y−ySaved

|y−ySaved|);

Proof: Similar to the proof of leaf 3.23 on page 16.

Invariant: Idem.

3.25 Go to next cell different from R2’s

Move to the next cell different from R2’s and stop if there is none.

Context: ¬busy ∧ clean = lt(pos) ∪ {pos} ∧ pos 6= posR2
(from SC3.3)

S.C.:

{

¬busy′ ∧ pos′ 6= posR2
∧ clean′ = clean ∧ clean′ = lt(pos′)

∨ ¬busy′ ∧ clean′ = grid
Type: Lazy, NS
Operator: Iter
Child(ren): Go to next cell or stop (3.26, p. 18)

Proof: We have to prove:

IR2
∧ (C3.25 ∨ C3.26) ∧ ¬SC3.25 ∧ T (SC3.26) |= T (V) = V0 → T (SC3.25)

IR2
∧ (C3.25 ∨ C3.26) ∧ ¬SC3.25 ∧ ¬T (SC3.25) |= T (SC3.26) → T (V) < V

IR2
∧ (C3.25 ∨ C3.26) ∧ ¬SC3.25 ∧ ¬T (SC3.25) |= T (SC3.26) → T (C3.26)

Whatever V is, the proof of ¬busy′ is obvious for all entailments, since C3.25

entails ¬busy, busy is internal and does not occur in the subtree rooted at this
node. So we do not consider it in the following.

Now define variant V to be an integer equal to:






+1 if pos ≺ posR2

0 if pos = posR2

−1 if pos Â posR2

Moreover, define its lower bound V0 = −1.
Consider the first entailment. If disjunct clean′ = grid in T (SC3.26) is true,

then T (SC3.25) obviously follows. Now if the other disjunct is true, together
with T (V) = V0 this entails pos′ 6= posR2

∧ clean′ = clean, so we are left with
proving clean′ = lt(pos′). We consider three cases:

• if pos = posR2
is true, then so is context C3.26, since C3.25 entails pos 6=

posR2
; then dx + dy = 1 ∧ pos′ Â pos entails lt(pos′) = lt(pos) and

C3.26 entails clean = lt(pos), thus together with clean′ = clean we get
clean′ = lt(pos′);

• if pos 6= posR2
and context C3.25 are true, then dx + dy = 1 ∧ pos′ Â pos

entails lt(pos′) = lt(pos)∪{pos} and C3.25 entails clean = lt(pos)∪{pos},
thus together with clean′ = clean we get clean′ = lt(pos′);

17

• if pos 6= posR2
and context C3.26 are true, then dx + dy = 1 ∧ pos′ Â pos

entails lt(pos′) = lt(pos)∪{pos} and C3.26 entails clean = lt(pos)∪{pos},
thus together with clean′ = clean we get clean′ = lt(pos′).

Now consider the second entailment. The premisses entail pos′ = posR2
,

for otherwise T (SC3.26) would entail T (SC3.25) with the same proof as above.
Thus T (V) = 0. Now since T (SC3.26) entails pos′ Â pos, we get pos ≺ posR2

and thus V = 1 > T (V).
The proof of the third entailment is similar to that of the first one.

3.26 Go to next cell or stop

Move to the next cell and stop if there is none.

Context:

{

pos 6= posR2
→ clean = lt(pos) ∪ {pos}

∧ pos = posR2
→ clean = lt(pos)

(from C3.25)
S.C.: (dx + dy = 1 ∧ pos′ Â pos ∧ clean′ = clean) ∨ clean′ = grid
Type: Non lazy, NS
Operator: Case
Child(ren):
- (If (pos = endGrid)) Stop if end of grid (3.27, p. 18)
- (If pos 6= endGrid) Go to next cell (3.28, p. 19)

Proof: We have to prove:

IR2
∧ C3.26 |=







condition1 ∨ condition2

condition1 ∧ T (SC3.27) → T (SC3.26)
condition2 ∧ T (SC3.28) → T (SC3.26)

where condition1 = (pos = endGrid) and condition2 = (pos 6= endGrid).
The first implication is obvious, since condition1 is logically equivalent to

¬condition2. The other two implications are obvious too, since T (SC3.27) is ex-
actly the second disjunct in T (SC3.26) and T (SC3.28) is exactly the first one.

3.27 Stop if end of grid (leaf)

Stop if the end of the grid has been reached.

Context:







pos = endGrid
∧ pos 6= posR2

→ clean = lt(pos) ∪ {pos}
∧ pos = posR2

→ clean = lt(pos)
(from C3.26 and condition on case branch)
S.C.: clean′ = grid
Type: Lazy, NS
Action: skip;

18

Proof: Observe that grid = lt(endGrid) if endGrid = posR2
and grid =

lt(endGrid)∪{endGrid} otherwise. Now assume pos = posR2
. Then from C3.27

it follows clean = lt(pos) and pos = endGrid, thus clean = lt(endGrid) = grid.
Finally, assume pos 6= posR2

. Then from C3.27 it follows clean = lt(pos)∪{pos}
and pos = endGrid, thus clean = lt(endGrid) ∪ {endGrid} = grid.

Invariant: Obvious since no variable is modified by skip.

3.28 Go to next cell

Go to the next cell.

Context: pos 6= endGrid (from condition on case branch)
S.C.: dx + dy = 1 ∧ pos′ Â pos ∧ clean′ = clean
Type: Non lazy, NS
Operator: Case
Child(ren):
- (If (x = xMax ∧ (y − yMin)%2 = 0) ∨ (x = xMin ∧ (y − yMin)%2 = 1))
Change line (3.29, p. 19)
- (If (x 6= xMax ∨ (y − yMin)%2 = 1) ∧ (x 6= xMin ∨ (y − yMin)%2 = 0)) Go
to next cell on same line (3.30, p. 20)

Proof: We have to prove:

IR2
∧ C3.28 |=







condition1 ∨ condition2

condition1 ∧ T (SC3.29) → T (SC3.28)
condition2 ∧ T (SC3.30) → T (SC3.28)

where condition1 is (x = xMax ∧ (y − yMin)%2 = 0) ∨ (x = xMin ∧ (y −
yMin)%2 = 1) and condition2 is (x 6= xMax ∨ (y − yMin)%2 = 1) ∧ (x 6=
xMin ∨ (y − yMin)%2 = 0).

The first implication is clear, since condition1 is logically equivalent to
¬condition2. The other are obvious too since clean is internal and does not oc-
cur in the subtree rooted at this node, and (T (SC3.29)∨T (SC3.30)) |= dx+dy =
1 ∧ pos′ Â pos obviously holds.

3.29 Change line (leaf)

Change line.

Context:







pos 6= endGrid

∧

[

(x = xMax ∧ (y − yMin)%2 = 0)
∨ (x = xMin ∧ (y − yMin)%2 = 1)

(from C3.28 and condition on case branch)

19

S.C.: dy = 1 ∧ dx = 0 ∧ pos′ Â pos
Type: Non lazy, NS
Action: moveV(+1);

Proof: Obvious.

Invariant: Obvious for x, xSaved, ySaved, clean, nbAttempts, which are not
modified by the action.

Now consider variable y. From IR2
it follows yMin ≤ y and thus, yMin ≤

y + 1 = y′. Now from IR2
it also follows y ≤ yMax. If y < yMax, then y′ =

y + 1 ≤ yMax. Finally, if y = yMax, then from C3.29 it follows pos = endGrid
and thus false, thus y ≤ yMax follows vacuously.

3.30 Go to next cell on same line (leaf)

Move one cell on the same line.

Context: (x 6= xMax∨ (y−yMin)%2 = 1)∧ (x 6= xMin∨ (y−yMin)%2 = 0)
(from condition on case branch)
S.C.: dx = 1 ∧ dy = 0 ∧ pos′ Â pos
Type: Non lazy, NS
Action: moveH(1 − 2(y − yMin)%2);

Proof: Obvious; observe that if (y−yMin)%2 = 0, then 1−2(y−yMin)%2 =
+1 and if (y − yMin)%2 = 1, then 1 − 2(y − yMin)%2 = −1.

Invariant: Obvious for y, xSaved, ySaved, clean, nbAttempts, which are not
modified by the action.

Now consider variable x. From IR2
it follows x ≤ xMax. Thus if x <

xMax we get x′ = x + 1 < xMax + 1 or x′ = x − 1 < xMax + 1, and thus
x′ ≤ xMax. Now if x = xMax then from the first conjunct in C3.30 it follows
(y − yMin)%2 = 1 and thus x′ = x − 1 < x ≤ xMax. The proof of xMin ≤ x
is dual.

4 Robot R2

We first describe the robot, then give its GDT and finally prove its validity
(numbered subsections).

Internal variables R2 has only one internal variable, namely a Boolean
busyR2

. Its value is true if and only if R2 is currently holding a piece of garbage.

Invariant R2’s invariant is simply IR2
= true.

20

1

2 3

burnpick

SeqAnd

Figure 2: R2’s GDT

Actions

• pickR2 :

– preconditions: ¬busyR2
∧ G(xR2

, yR2
),

– postconditions: busyR2
∧ ¬G(xR2

, yR2
).

• burn:

– preconditions: busyR2
,

– postconditions: ¬busyR2
.

GDT R2’s GDT is given on Figure 2. It has the following properties:

• Trigerring context: TCR2
= G(xR2

, yR2
).

• Precondition: PrecGDTR2
= (¬busyR2

).

• Initialization initR2 : busyR2
= false;.

Obviously, initR2 establishes PrecGDTR2
and IR2

.
Obviously too, PrecGDTR2

is maintained by R2’s GDT, since the satisfac-
tion condition of its top goal entails ¬busy′

R2
. This means that R2 executes its

GDT each time its trigerring context becomes true (i.e., each time a piece of
garbage is on its cell).

4.1 Clean cell

Clean the cell.

Context: ¬busyR2
∧ G(xR2

, yR2
) (from PrecGDTR2

and TCR2
)

S.C.: ¬busyR2
∧ ¬G(xR2

, yR2
)

Type: Non lazy, NS
Operator: SyncSeqAnd(G(xR2

, yR2
))

Child(ren):

21

- Pick (4.2, p. 22)
- Burn (4.3, p. 22)

Proof: Obvious since SC4.3 = SC4.1.

4.2 Pick (leaf)

Pick the piece of garbage on the cell.

Context: ¬busyR2
∧ G(xR2

, yR2
) (from C4.1)

S.C.: busyR2
∧ ¬G(xR2

, yR2
)

Type: Non lazy, NS
Action: pickR2

Proof: Obvious since the context entails the preconditions of action pickR2 ,
and the postconditions of pickR2 entail SC4.2.

Invariant: Obvious since IR2
= true.

4.3 Burn (leaf)

Burn the piece of garbage currently held.

Context: busyR2
∧¬G(xR2

, yR2
) (from SC4.2 since G(xR2

, yR2
) is synchronized

in 4.1)
S.C.: ¬busyR2

∧ ¬G(xR2
, yR2

)
Type: Non lazy, NS
Action: burn

Proof: Obvious since the precondition of the action is verified (C4.3 entails
busyR2

), ¬busyR2
is proved by the postcondition of the action, and G(xR2

, yR2
)

is not modified by the action.

Invariant: Obvious since IR2
= true.

22

